Properties of the simulated circumgalactic medium
Published in MNRAS, 2020
Recommended citation: Lochhaas, C., Bryan, G., Li, Y., Li, M., Fielding, D. (2019). "Properties of the simulated circumgalactic medium." MNRAS. pdf version available here
The circumgalactic medium (CGM) is closely linked to galaxy formation and evolution, but difficult to characterize observationally and typically poorly resolved in cosmological simulations. We use spherically-symmetric, idealized, high-resolution simulations of the CGM in 1012M⊙ and 1011M⊙ dark matter halos to characterize the gas pressure, turbulent and radial velocities, and degree of thermal and effective dynamic pressure support in the overall CGM as well as in its high- and low-temperature phases. We find that the 1012M⊙ halo contains a CGM mostly formed of a hot gas halo in hydrostatic equilibrium out of which cold gas condenses and falls onto the central galaxy, while the 1011M⊙ halo’s CGM is not in hydrostatic equilibrium, has a wider spread of properties at a given galactocentric radius, does not have a clear separation of hot and cold phases, and is dominated by bulk motions. We also find that the degree of pressure support in the 1011M⊙ halo is strongly dependent on the parameters of the galactic winds of the central galaxy. These results promote the idea that there is no “average” CGM and care must be taken when setting the initial conditions for a small-box simulation of a patch of the CGM.
Cassandra Lochhaas, Greg L. Bryan, Yuan Li, Miao Li, Drummond Fielding. Properties of the simulated circumgalactic medium. MNRAS, 493, 1461, March 2020