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ABSTRACT

Large scale outflows in star-forming galaxies are observed to be ubiquitous, and are a key aspect of

theoretical modeling of galactic evolution, the focus of the SMAUG (Simulating Multiscale Astrophysics

to Understand Galaxies) project. Gas blown out from galactic disks, similar to gas within galaxies,

consists of multiple phases with large contrasts of density, temperature, and other properties. To

study multiphase outflows as emergent phenomena, we run a suite of ∼ pc-resolution local galactic

disk simulations using the TIGRESS framework. Explicit modeling of the interstellar medium (ISM),

including star formation and self-consistent radiative heating plus supernova feedback, regulates ISM

properties and drives the outflow. We investigate the scaling of outflow mass, momentum, energy,

and metal loading factors with galactic disk properties, including star formation rate (SFR) surface

density (ΣSFR ∼ 10−4 − 1 M� kpc−2 yr−1), gas surface density (Σgas ∼ 1 − 100 M� pc−2), and total

midplane pressure (or weight; Pmid ≈ W ∼ 103−106 kB cm−3 K). The main components of outflowing

gas are mass-delivering cool gas (T ∼ 104 K) and energy/metal-delivering hot gas (T >∼ 106 K). Cool

mass outflow rates measured at outflow launch points (one or two scale heights ∼ 300 pc − 1 kpc)

are 1–100 times the SFR (decreasing with ΣSFR), although in massive galaxies most mass falls back

due to insufficient outflow velocity. The hot galactic outflow carries mass comparable to 10% of the

SFR, together with 10-20% of the energy and 30-60% of the metal mass injected by SN feedback.

Importantly, our analysis demonstrates that in any physically-motivated cosmological wind model, it

is crucial to include at least two distinct thermal wind components.

Keywords: Galactic winds (572), Magnetohydrodynamical simulations (1966), Star formation (1569),

Stellar feedback (1602), Interstellar medium (847)

1. INTRODUCTION

In current theories of galaxy formation and evolution, galactic winds are an important element, counteracting cosmic

accretion to limit stellar mass growth of galaxies. Even in the earliest theoretical models of galaxy formation in dark

matter halos, the issue of overproduction of stellar mass was recognized, necessitating mass and energy flows out of

galaxies (e.g., White & Rees 1978; Dekel & Silk 1986; White & Frenk 1991). Recent cosmological hydrodynamical

simulations and semi-analytic models that successfully match the observed galaxy statistics, including stellar mass-

halo mass relations, all require ejection of a significant fraction of the gas mass accreted in the form of galactic-scale

winds (see reviews of Somerville & Davé 2015; Naab & Ostriker 2017, and references therein). With the enormous

spatial and temporal domains required for cosmological-scale modeling, however, it is not possible to simultaneously

represent the detailed properties of the star-forming interstellar medium (ISM) that lead to the production of galactic
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winds. Absent a means to directly model the physics within galactic disks, the usual practice is to adopt parameterized

scaling relations (for both star formation rates and wind mass-loss rates), calibrating free parameters by reference to

observations (e.g., Vogelsberger et al. 2013; Crain et al. 2015; Pillepich et al. 2018). The approach of empirically-

constrained parameterization, while heretofore unavoidable, has been a major source of uncertainty in modern galaxy

formation theory. The SMAUG1 project was initiated to address the need for developing and implementing subgrid

treatments for cosmological models that are derived and calibrated from simulations that explicitly model and resolve

key physical processes.

In addition to the important role of winds in the theory of galaxy formation, galactic outflows are prevalent in ob-

servations of nearby dwarf starbursts and luminous/ultraluminous infrared galaxies (LIRGs/ULIRGs) (e.g., Heckman

et al. 1990; Martin 1999; Heckman et al. 2000; Martin 2005; Heckman et al. 2015; Chisholm et al. 2015). Winds

appear to be even more ubiquitous in both AGN-host and star-forming galaxies at high-redshift (e.g., Pettini et al.

2001; Shapley et al. 2003; Tremonti et al. 2007; Steidel et al. 2010; Erb et al. 2012; Förster Schreiber et al. 2019),

although the limited spatial resolution of these observations makes interpretation more difficult.

Galactic outflows driven by star formation are the result of the feedback that is produced by populations of young

stars. This feedback – primarily associated with core-collapse supernovae (SNe) from massive stars, but with some

contribution from stellar winds and radiation – returns metal-enriched gas at extremely high velocity to the surrounding

ISM. As a result of complex interactions driven by SN shocks (and potentially involving cosmic rays as an intermediary),

a portion of the ISM gas is accelerated sufficiently to emerge as a galactic wind, delivering mass, momentum, energy, and

metals to the circumgalactic/intergalactic medium (CGM/IGM). Because the massive stars responsible for feedback

are buried deep within the ISM, properties of galactic outflows are not simply set by the immediate deposition at

feedback sites. Instead, localized energy injection events build up expanding bubbles (or superbubbles for correlated

feedback events) with more and more momentum as they sweep up surrounding gas (see e.g., Sedov 1959; Taylor

1950; Cox 1972; McKee & Ostriker 1977 for a single SN and e.g., Weaver et al. 1977; McCray & Kafatos 1987; Koo

& McKee 1992 for stellar winds or clustered SNe). The hot ISM is produced by stellar-wind and SN shocks, and fills

the interior of each bubble. Cooling of the shocked ISM when bubble expansion slows to <∼ 200 km s−1 limits the

momentum injection for the case of a single SN (e.g., Cioffi et al. 1988; Thornton et al. 1998), while mixing of hot

diffuse gas with dense gas at the bubble-shell boundary drains energy from superbubbles and reduces their dynamical

impact (e.g. El-Badry et al. 2019). When extreme star formation/feedback events occur, superbubble breakout from

the ISM before the onset of cooling alters the dynamics significantly (e.g., Tomisaka & Ikeuchi 1986; Mac Low et al.

1989; Cooper et al. 2008) and enables delivery of a large fraction of pristine metals and original feedback energy to

the CGM (e.g., Kim et al. 2017a; Fielding et al. 2018).

Based on focused high-resolution numerical simulations with an inhomogeneous ISM (e.g., Kim & Ostriker 2015a;

Iffrig & Hennebelle 2015; Martizzi et al. 2015; Walch & Naab 2015), the net terminal momentum injection from

single SNe has been shown to be quite insensitive to the background medium’s average density and detailed structure

(this insensitivity is because the onset of cooling by metal lines at postshock temperature T ∼ 106 K is insensitive

to the density). A practical application of this result to galactic simulations is the numerical approach of injecting

the previously calibrated terminal momentum if the energy-conserving stage of a SN remnant (SNR) expansion is

unresolved (e.g., Kimm & Cen 2014; Kim & Ostriker 2017; Hopkins et al. 2014, 2018a). This “momentum feedback”

approach captures the dynamical impact of SN feedback on the warm-cold ISM phases (essentially all of the ISM’s

mass) reasonably well, especially for driving turbulence and therefore self-regulating the star formation rate (SFR),

even at relatively low numerical resolution (e.g., Kim et al. 2011, 2013; Shetty & Ostriker 2012; Kim & Ostriker

2015b, 2017; Hopkins et al. 2014; Kimm et al. 2015). However, how much hot gas is created in the ISM by expanding

SNe-driven bubbles, and how much is retained to vent from the ISM into the CGM, depends sensitively on the details

of micro/macro physics and conditions of the vertically-stratified ISM.

Physical elements that affect momentum injection and hot gas yield include turbulence, inhomogeneity, magneti-

zation, thermal conduction, as well as temporal and spatial correlations of feedback (e.g., Kim & Ostriker 2015a;

Kim et al. 2017a; Fielding et al. 2018; Gentry et al. 2017, 2019; El-Badry et al. 2019). Although in principle hot gas

generation can be implemented via deposition of “residual” thermal energy (e.g., Martizzi et al. 2015), this will be

immediately lost if resolution is too low and hot diffuse gas is not spatially separated from warm fast gas (Hu 2019). In

1 Simulating Multiscale Astrophysics to Understand Galaxies; https://www.simonsfoundation.org/flatiron/
center-for-computational-astrophysics/galaxy-formation/smaug/

https://www.simonsfoundation.org/flatiron/center-for-computational-astrophysics/galaxy-formation/smaug/
https://www.simonsfoundation.org/flatiron/center-for-computational-astrophysics/galaxy-formation/smaug/
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general, outflow properties are much more sensitive to resolution than SFRs (e.g., Rosdahl et al. 2017; Kim & Ostriker

2017, 2018; Smith et al. 2018); because proper hot gas generation and evolution is crucial, outflow properties will be

incorrect if most SNe are realized in the form of momentum feedback (e.g., Kim & Ostriker 2018; Hu 2019).

A key characteristic of galactic outflows, which is often overlooked in theoretical modeling, is their multiphase nature.

Galactic outflows in observations are often detected in spectra of neutral and ionized gas tracers (e.g., Na I, Hα, Si II,

Si IV; Heckman et al. 1990; Martin 1998, 2005; Rupke et al. 2005; Chisholm et al. 2015; Heckman et al. 2015) that

trace gas at T ∼ 104−5 K, but there has also been direct detection of kinematically confirmed hot winds (T ∼ 106−7 K)

via diffuse X-rays (e.g., Read et al. 1997; Lehnert et al. 1999; Strickland & Heckman 2007), as well as cold atomic

and molecular outflows (e.g., Sturm et al. 2011; Bolatto et al. 2013; Leroy et al. 2015; Martini et al. 2018). Due to

the low density and hence low emissivity of the hot gas, quantitative characterization of full multiphase outflows from

observations have been limited to a few best case examples (e.g., Strickland & Heckman 2007; Leroy et al. 2015);

significant advances will require next-generation X-ray observatories (e.g., AXIS, ATHENA, and Lynx).

To date, systematic theoretical studies of outflow properties for different thermal phases have also been limited.

Utilizing pc-resolution local, kpc-patches of galactic disks, resolved multiphase ISM simulations with SN feedback

(and additional feedback processes) have been conducted by several groups. However, due to the complexity and

expense of modeling full star-forming ISM physics with high resolution, many previous simulations studying galactic

winds have adopted prescribed SN rates and positions (e.g., Creasey et al. 2013; Girichidis et al. 2016a,b; Martizzi

et al. 2016; Li et al. 2017; Girichidis et al. 2018a) and run only for a short period of time, with a limited range of

ISM conditions (e.g., Gatto et al. 2017; Kannan et al. 2020). To understand galactic outflows as emergent phenomena

produced by the star-forming ISM, lack of self-consistency is a concern because the reported characteristics could be

sensitive to the adopted feedback rates and SN locations. Previous controlled simulations with SNe imposed “by hand”

have shown that the resulting ISM and outflow properties change dramatically when SNe are located only in dense gas

or randomly (e.g., Girichidis et al. 2016a), or when clustering of SN is varied (e.g., Fielding et al. 2018). Simulations

with a short duration are problematic because results may be strongly affected by imposed ISM initial conditions and

numerical startup transients.

A different approach from high-resolution “local patch” simulations is global isolated galaxy and cosmological zoom

simulations. In the case of cosmological zooms (e.g., Muratov et al. 2015; Christensen et al. 2016; Anglés-Alcázar

et al. 2017; Tollet et al. 2019), cosmic accretion and merging/interaction of galaxies is included, which provides a

“natural” CGM environment with which winds may interact (Fielding et al. 2020b). For studying wind acceleration,

global/zoom models also have an advantage over local models in that the effect of global geometry and quasi-conical

wind expansion and acceleration is naturally captured (e.g., Chevalier & Clegg 1985). However, for studying wind

creation, zoom simulations are at a disadvantage compared to local models in that the ISM physics including star

formation and feedback is at best only marginally resolved. The adopted mass resolution (∼ 103−5M�) is still

insufficient to resolve the Sedov-Taylor stage of SNR evolution: since the remnant mass at the time of shell formation

(∼ 103M�) must be resolved by several elements, mass resolution of . 100M� is needed (Kim & Ostriker 2015a).

This is critical for accurately modeling hot gas production and the multiphase interactions inherent to wind launching

(Hu 2019). The derived wind properties from zoom-in simulations are compromised by approximate treatments of

SN feedback: artificially-delayed cooling (Christensen et al. 2016; Tollet et al. 2019) or momentum feedback (Muratov

et al. 2015, 2017; Anglés-Alcázar et al. 2017).

Even in isolated galaxy simulations, achieving high enough resolution for resolving individual SNe as well as self-

consistent modeling of star formation with self-gravity is challenging; currently such simulations are done only for very

low mass galaxies (total gas mass ∼ 107M�; e.g., Emerick et al. 2018; Hu 2019). For more massive galaxies, prescribed

rates and positions of SNe are still adopted (e.g., Fielding et al. 2017; Schneider & Robertson 2018). Note that in

their study of superwinds, Schneider et al. (2020) consider an isolated global galaxy with comparable resolution to

local simulations (up to 5 pc) but with a much smaller set of physics: neither self gravity nor magnetic fields, no cold

ISM (cooling is truncated at 104 K), and prescribed SN feedback rates and positions. Nevertheless, these simulations

demonstrate the importance of uniformly high resolution in the extraplanar region for following both the hot and cool

components of outflows and the interaction between phases.

Another potential issue in characterizing multiphase outflow properties from cosmological zoom or isolated global

simulations is the adaptive resolution (either AMR or semi-Lagrangian method) that is usually employed (an exception

is the CGOLS suite by Schneider & Robertson 2018). Although semi-Lagrangian/adaptive resolution (generally at

constant mass) provides better resolution at higher densities to improve treatment of star formation, the low-density
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hot gas, which carries the majority of outflowing energy and metals, can be quite under-resolved. The phase structure

and overall energetics of the ISM and CGM depend sensitively on accurately resolving the mixing at interfaces between

hot and cool gas (e.g. Fielding et al. 2020a), which would require extremely high mass resolution given the low density

of the hot gas. Indeed, recent work employing fixed “spatial” rather than “mass” resolution in the CGM has revealed

dramatic differences in multiphase gas properties (e.g., Hummels et al. 2019; Peeples et al. 2019; van de Voort et al.

2019). For winds, under-resolution of the hot gas raises potential concerns about numerical phase mixing that could

lead to underestimated metal loading or overestimated mass loading in an artificially phase-mixed wind, depending on

the halo potential (see discussion in Kim & Ostriker 2018).

In the large-box cosmological simulations that are necessary for predicting statistics of galactic populations and for

connecting baryonic distributions on large scales to cosmological parameters, typical mass resolutions are > 105M�
(see Figure 1 in Nelson et al. 2019 for a recent compilation). Even with significant improvements in computing

power, it will continue to be necessary into the future to apply subgrid methodology in treating star formation and

winds, because directly representing the physical processes involved would require several orders of magnitude higher

resolution. Key wind parameterizations that are usually required by large-box cosmological simulations (as well as

semi-analytic cosmological models) are (1) the dimensionless mass loading consisting of the mass (hydrogen and metals)

carried out by the wind per stellar mass formed, and (2) the energy loading, consisting of the fraction of the original

supernova energy that is transferred to the outflowing gas. In addition, it is necessary to set (3) the wind velocity;

this is often scaled relative to the halo velocity, but more generally a momentum loading (momentum ejection per

stellar mass formed) or characteristic outflow velocity (or its distribution) can be given. Currently, the standard

practice (e.g., Oppenheimer & Davé 2006; Vogelsberger et al. 2013; Crain et al. 2015; Pillepich et al. 2018) is to

tune the wind parameters so that the resulting global galaxy properties match empirical constraints. Cosmological

semi-analytic models (SAMs) also adopt empirical prescriptions for the impact of stellar driven winds on the ISM and

CGM. Although SAM feedback prescriptions have traditionally been tuned to match observations, it is also interesting

to study how different these prescriptions are from those that emerge from detailed numerical simulations (Pandya

et al. 2020).

In the present paper, as part of the first results from SMAUG,2 we take a step towards the goal of a new subgrid

approach by providing a detailed characterization of the mass, momentum, energy, and metal loading of multiphase

outflows, based on pc-resolution simulations of the star-forming ISM. In contrast to earlier local simulations, the

major advance of our work is to achieve self-consistency in the ISM evolution, star formation, and feedback as well

as uniformly high resolution and long-term evolution. Using a new numerical framework called TIGRESS (Kim &

Ostriker 2017, hereafter KO17), we resolve the self-gravitating collapse of star-forming cloud complexes, the energy-

conserving stage of SNR evolution when hot gas is created, and the subsequent interactions between diffuse hot and

denser warm gas. KO17 delineated the numerical methods involved, and demonstrated their application by running

a Solar neighborhood model over 3 orbit times, covering ∼ 10 star-formation/feedback cycles. Over this time, the

ISM achieves a quasi-steady state with self-regulated star formation, insensitive to the initial setups. KO17 presented

a thorough resolution study and confirmed convergence of turbulence amplitudes, thermal phase balance, magnetic

field strength, SFRs, and outflow rates. Kim & Ostriker (2018, hereafter KO18) analyzed multiphase wind properties

in Solar-neighborhood TIGRESS simulations, focusing on the dichotomy of warm fountains and hot winds, loading

factors as a function of heights and phases, and distributions of outflow velocities in the warm outflow.

The current paper focuses on the systematic investigation of outflowing gas, separately characterizing multiple phases

of gas in a suite of 7 TIGRESS simulations. We quantify mass, momentum, energy, and metal loading factors, as well

as characteristic outflow velocities and metal enrichment factors. We follow KO17’s definition of thermal phases but

merge the three lowest temperature phases to a single cool (T < 2×104 K) component, while keeping the intermediate

(2×104 K < T < 5×105 K) and hot (T > 5×105 K) phases. Physical conditions in our set of 7 models span two orders

of magnitude in gas surface density (Σgas ∼ 1 − 100M� pc−2) and four orders of magnitude in SFR surface density

(ΣSFR ∼ 10−4−1M� kpc−2 yr−1), covering typical local conditions of nearby star forming galaxies (e.g., Bolatto et al.

2017; see also Motwani et al. 2020 for our parameter space coverage in comparison with Illustris-TNG galaxies).

To further characterize outflows, in a companion paper we shall present joint probability distribution functions

(PDFs) of gas outflow velocities and sound speeds. We shall also provide a guide to combining the loading factors

presented here and PDFs and applying them in large-scale models of galaxy formation.

2 https://www.simonsfoundation.org/flatiron/center-for-computational-astrophysics/galaxy-formation/smaug/papersplash1

https://www.simonsfoundation.org/flatiron/center-for-computational-astrophysics/galaxy-formation/smaug/papersplash1
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The structure of this paper is as follow. Section 2 summarizes the TIGRESS numerical framework and introduces

the model suite parameters employed in this paper. Section 3 explicates the cycles of star formation, feedback,

and outflow/inflow that emerge in all the simulations. Section 4 presents multiphase outflow properties including

outflow fluxes, metal properties, and characteristic velocities as well as average loading factors. Section 5 compares

outflow characteristics with galactic properties including SFR surface density (ΣSFR), gas surface density (Σgas),

midplane density (nmid), midplane pressure (Pmid), gas weight (W), and gas depletion time (tdep) to derive scaling

relations. Section 6 discusses our results in the context of other existing simulations and observations, provides physical

interpretations, and summarizes strengths and weaknesses of our numerical model. In Section 7, we summarize our

results.

2. METHODS & MODELS

This paper investigates properties of a suite of local ISM simulations in star-forming galactic disks to provide a

comprehensive characterization of multiphase galactic outflows driven by stellar feedback. To evolve the ISM with star

formation and stellar feedback self-consistently, we utilize the TIGRESS framework described in KO17. We refer the

reader to KO17 for details of implementations and tests. In Section 2.1, we summarize key features and modifications

of the TIGRESS framework from KO17. In Section 2.2, we introduce model parameters for our suite of simulations.

2.1. Methods

The TIGRESS framework evolves the ISM by solving the ideal MHD equations, including gravity and cool-

ing/heating, in a local, rotating frame with a galactic orbital frequency Ω(R0) at a galactocentric distance R0. Local

Cartesian coordinates x and y respectively represent the local radial (R−R0) and azimuthal (R0[φ−Ωt]) directions,

while z represents the vertical distance from the midplane. Shearing-periodic and outflow boundary conditions are

adopted in the horizontal and vertical directions, respectively. We use the Athena finite volume code for MHD (Stone

et al. 2008; Stone & Gardiner 2009) with additional physics modules. The shearing box approach (Stone & Gardiner

2010) allows us to model the ISM in the context of rotating disk galaxies with uniformly high resolution (∼ O(1) pc)

everywhere.

To follow star formation by gravitational collapse, the TIGRESS framework includes self-gravity by solving Poisson’s

equation using FFTs (Gammie 2001; Koyama & Ostriker 2009) and forms sink particles to represent star cluster

formation in cells undergoing unresolved gravitational collapse (Gong & Ostriker 2013). The sink particles then

further accrete if gas flows are converging into a virtual control volume (33 cells surrounding a particle) from all

three directions. Gas accretion onto a given sink particle ceases as soon as the first SN explodes (the SN event is

stochastically determined, with the first event typically 3-4 Myr after the birth; see below). When sink particles are

first formed or actively accreting, we reset the gas density, momentum, and pressure within the control volume with

the extrapolated values from the nearby cells and dump only the difference between original and extrapolated values

of mass and momentum in the control volume into the star particle. In the original Gong & Ostriker (2013) treatment

adopted in KO17, all of the mass flux into the control volume is added to sink particles and the control volume is

treated as ghost zones. Since control volume cells become active zones if a sink particle becomes a non-accreting

passive particle or merges with other particles, this approach is not strictly mass conservative. As initially applied in

KO17, this non-conservation has a minimal effect in the total mass (net difference ∼ 10% over 3torb) of the R8 model,

because the SFR is low and particle merging is not frequent, but it can be more significant for models with high SFRs.

In the new approach, where the sink particle control volumes are treated as potential active cells, mass conservation

is improved (see also Lam et al. 2019); for example, the cumulative effect in mass is at 3% over torb for model R4.

By comparison, the total ISM mass reduction over 0.5 < t/torb < 1.5 is 23%, with 17% going into star formation and

8% into winds. Non-conservation is smaller for models with smaller SFRs, and ∼ 4 − 5% for models R2 and LGR2.

It should be kept in mind that instantaneous relationships among SFRs, outflow properties, and ISM properties are

not affected by this slow secular variation, and the non-conservation does not affect any of the measures we report. In

particular, all measures of outflows are obtained directly from fluxes in the simulation. The non-conservation of mass

(reflecting a small addition from “re-activated” control volume cells) simply makes the mean value of Σgas at most a

few percent larger than it would otherwise be over the simulation duration.

Stellar feedback in the TIGRESS framework includes the effects of FUV radiation and SN explosions. We slightly

update the treatment of the heating rate due to FUV radiation from young stars. FUV radiation absorbed by small

grains (e.g. PAHs) produces photoelectrons that heat the gas (Bakes & Tielens 1994). This is believed to be the
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dominant heating process in the neutral (atomic) ISM (Wolfire et al. 1995) where FUV is not shielded (at low column

densities) and where dust is not destroyed. To first order, the heating rate is proportional to the mean FUV intensity.

Allowing for background heating from the metagalactic UV (Sternberg et al. 2002), the heating rate is given by

Γ = Γ0

(
JFUV

JFUV,0
+ 0.0024

)
, (1)

where we adopt as reference Solar neighborhood values a heating rate of Γ0 = 2× 10−26 erg s−1 (Koyama & Inutsuka

2002) and a mean FUV intensity of 4πJFUV,0 = 2.7× 10−3 erg s−1 cm−2 (or G0 = 1.7; Draine 1978). We note that Γ0

is held fixed, implying that in the present treatment, we do not allow for variations in dust abundance or photoelectric

efficiency (Bakes & Tielens 1994; Weingartner & Draine 2001).

In the TIGRESS framework, the total FUV luminosity is calculated by summing up FUV luminosity of individual

star clusters

LFUV =
∑
sp

ΨFUV(tage,sp)Msp (2)

using a tabulated time-dependent mass-to-luminosity ratio ΨFUV (from STARBURST99 as in Leitherer et al. (1999);

see Figure 1 of KO17), star cluster age tage,sp (mass-weighted average is taken when there is addition of mass from

accretion and merging), and star cluster mass Msp. As our star clusters have masses & 103M�, we adopt a fully-

sampled Kroupa initial mass function (IMF; Kroupa 2001) in setting ΨFUV. In KO17, we calculated the mean FUV

intensity as 4πJFUV = ΣFUV ≡ LFUV/(LxLy), assuming uniformly spread radiation over the horizontal area of LxLy.

This is valid for Solar neighborhood and outer disks (e.g., R8, R16, and LGR8), but may overestimate the interstellar

radiation field in denser environments where attenuation is generally higher. To allow for attenuation in an average

sense, here we set the mean intensity based on the plane-parallel solution of the equation of radiation transfer in a

slab with a uniform source distribution,

4πJFUV = ΣFUV
(1− E2(τ⊥/2))

τ⊥
, (3)

where τ⊥ = κFUVΣgas is the UV optical depth perpendicular to the slab and E2 is the second exponential integral.3

We adopt κFUV = 103 cm3 g−1. Note that our heating rate as a result is time-varying but uniform in space, modulo a

turn-off at high temperatures T > 105 K.

The SN treatment is unchanged from KO17. When a SN explodes, we first calculate the mean gas properties (total

mass MSNR and mean density namb) for the cells whose cell-centered distances from the explosion center are smaller

than RSNR = 3∆x. We inject both thermal and kinetic energy with a ratio consistent with the Sedov-Taylor stage

(0.72 : 0.28) if MSNR/Msf < 1, where Msf = 1540M�(namb/ cm−3)−0.33 is the shell formation mass at a given ambient

medium density namb (Kim & Ostriker 2015a). If the shell formation mass is unresolved (i.e., MSNR/Msf > 1 within

the feedback region), we instead inject the terminal momentum of SNR pSNR = 2.8×105M� km s−1(namb/ cm−3)−0.17

(Kim & Ostriker 2015a). We find that more than 90% SNe are well resolved (i.e., MSNR/Msf < 0.1) in the simulations

presented here.

With each SN explosion, we eject massless test particles with 50% probability to represent a runaway originating

from a binary OB star. The ejection velocity follows an exponential distribution with exp(−vrun/50 km s−1) for

vrun ∈ (20, 200) km s−1 (Eldridge et al. 2011), and the direction is chosen isotropically. Each runaway moves under

the total gravitational potential and explodes as a SN after a pre-assigned explosion time. The total SN rate from a

star cluster, including its runaways, is consistent with the SN rate from STARBURST99 (Leitherer et al. 1999). KO18

showed that the outflow properties are not sensitive to the inclusion of runaways.4 We turn off runaways in the R2

model, in which a large number of runaways would otherwise be created, for the sake of simulation efficiency.

3 In follow-up work applying the adaptive ray-tracing method of Kim et al. (2017b), we are further testing this approximation.
4 Andersson et al. (2020) explored the effect of runaways in isolated galaxy simulations and found large enhancement of mass outflow rates

and corresponding loading factors (× 5 − 10) when runaways were included. However, this result may reflect a numerical rather than a
physical effect. In particular, it is possible that their no-runaways simulation failed to drive strong outflows because the majority of SNe had
numerically-unresolved evolution which failed to create hot gas that breaks out from the disk. The adopted AMR scheme (the RAMSES
code) has a refinement strategy of splitting cells when the cell mass exceeds a designated maximum mass, in this case ∼ 4× 103M�. The
majority of SNe within star-forming, dense gas at the maximum level of refinement would then occur in cells with mass exceeding the
shell-formation mass ∼ 103 M�, with feedback implemented via momentum injection. However, runaway particles that have moved far
from their birth places may be in lower-density environments, with higher mass refinement, at the time of SN explosions. To some extent,
the inclusion of runaways is a partial solution to numerical difficulties in resolving SNe and driving hot superbubble breakout in moderate
resolution simulations like Andersson et al. (2020). In our simulations, however, resolution is much higher and the majority of SNe in
clusters (> 90%) resolve the Sedov-Taylor stage of evolution, so that inclusion of runaways has insignificant impact on outflows.
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SN explosions involve energy, mass, and metal returns. For simplicity, we adopt single values for “population-

averaged” SN explosion energy ESN = 1051 erg, ejecta mass Mej = 10M�, and metallicity ZSN = 0.2 (Leitherer et al.

1999). As we are focusing on the galactic winds driven by SNe, we do not consider other means of mass and metal

returns from either young or old stars. We note that we follow metal density with a separate passive scalar.

We use a tabulated cooling function from a combination of Koyama & Inutsuka (2002) at T < 104.2 K and Sutherland

& Dopita (1993) at T > 104.2 K for solar metallicity. Although we include a metal tracer field, which is initialized

with solar metallicity ZISM,0 = 0.02, our cooling function does not depend on gas metallicity. In the model with the

highest ΣSFR (R2, see below), we find that the ISM metallicity reaches ∼ 0.04 at the end of simulation, which is well

within a range of observational estimates of the ISM metallicity in nearby star forming galaxies (e.g., Lian et al. 2018).

The hot outflow is typically more enriched by a factor of 2 than the ISM (although the cooling rate of the diffuse

hot gas is quite low in any case). To address the effect of realistic, metallicity-dependent cooling, development of a

second-generation TIGRESS framework, including more complete treatments of cooling, radiation, and chemistry, is

now underway.

2.2. Models

For this paper, we use TIGRESS runs with 7 different parameter sets, covering conditions generally representative

of inner and outer regions of Milky Way-like galaxies, including the Solar neighborhood model described in KO17

and KO18. We list key parameters of these models in Table 1. The gas surface density Σgas,0 in Column (2) is the

initial value in the simulation and decreases over time because gas turns into sink particles due to star formation and

escapes vertically as a wind. SNe return mass to the gas in the form of ejecta, but on average this is only 10% of that

locked into stars. The galactic environment parameters such as angular speed of galactic rotation Ω, stellar surface

density Σ∗, stellar scale height z∗, dark matter halo density ρdm, and galactocentric radius R0 are fixed in time for

each simulation; these parameters are important for setting the gravitational potential (see KO17 for the analytic

expression), and for setting the differential shear rate (important to dynamo activity; e.g., Käpylä et al. 2018) and

Coriolis force. The “LG” models have external (stellar and dark-matter) vertical gravity reduced by about a factor of

8 near the midplane (z � z∗) and 4-5 far above the disk (z � z∗) compared to the corresponding R2, R4, R8 models.

All simulations use (Nx, Ny, Nz) = (256, 256, 1792) zones and uniform cubic grid cells with side length of ∆x (Column

(8)). Our parameter choice covers typical ranges seen in nearby star-forming galaxies (e.g., Sun et al. 2020) as well as

cosmological simulations (Motwani et al. 2020).

Additional parameters are used to set initial conditions of the gas in the simulation, including the temperature profile

and turbulent vertical velocity dispersion σz,0 and plasma beta β0 ≡ P/Pmag (see KO17). The initial vertical profiles

of density, pressure, and azimuthal magnetic field are set to be in a hydrostatic equilibrium with given total vertical

velocity dispersion, including thermal, turbulent, and magnetic terms. However, the initial thermal and turbulent

support is lost quickly due to radiative cooling and turbulence dissipation. The gas soon falls toward the midplane

and this density increase triggers a burst of star formation. As we shall discuss in Section 3, the first burst is not

fully self-consistent because it is subject to the initialization. Over time, the evolution becomes self-regulated; our

analysis therefore will focus on the time subsequent to the first burst. To offset the rapid initial cooling and turbulence

dissipation, we introduce randomly placed star particles in the initial conditions with age and mass distributions

corresponding to the ΣSFR at later times (estimated from lower-resolution simulations). We adopt β0 = 10 for all

models, except R2 with β0 = 2; and σz,0 = 30, 15, 10, and 10 km/s for R2/LGR2, R4/LGR4, R8/LGR8, and R16.

From several independent simulation runs with different σz,0 and β0 (typical ranges are σz,0 = 10 − 30 km s−1 and

β0 = 1−10), we have confirmed that the evolution is statistically converged irrespective of initial conditions unless the

initial parameters are extreme; the initial magnetic field strength can impact the overall outcomes if it is too strong

or too weak compared to the saturated value since the evolution of the regular magnetic field is much slower than all

other time scales (see Kim & Ostriker 2015b).

Magnetic fields in outflows do not contribute to momentum and energy fluxes significantly. However, inclusion of

magnetic fields has indirect effects on outflows and associated galactic properties by increasing the vertical pressure

support near the midplane and reducing SFRs. We find that contribution from magnetic stresses to the vertical

pressure support can be as high as 50% (depending on initial field strengths since saturation is not achieved within

1-2 torb), but typically about 30% (Ostriker & Kim in prep.).

The numeral in each model name indicates the galactocentric radius of the simulation box; e.g. the box in model R8 is

centered at R0 = 8 kpc. The spatial resolution in pc is progressively smaller from model R16 to model R2 (also implying
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Table 1. Model Parameters

Model Σgas,0 Σ∗ ρdm Ω z∗ R0 ∆x

(1) (2) (3) (4) (5) (6) (7) (8)

R2 150 450 8.0 · 10−2 100 245 2 2

R4 50 208 2.4 · 10−2 54 245 4 2

R8 12 42 6.4 · 10−3 28 245 8 4

R16 2.5 1.71 1.4 · 10−3 12 245 16 8

LGR2 150 110 1.5 · 10−2 50 500 2 2

LGR4 60 50 5.0 · 10−3 30 500 4 2

LGR8 12 10 1.6 · 10−3 15 500 8 4

Note— Column (2): initial gas surface density in M� pc−2.
Column (3): stellar surface density in M� pc−2. Col-
umn (4): dark matter volume density at the midplane
in M� pc−3. Column (5): angular velocity of galactic ro-
tation at the domain center in km s−1 kpc−1. Column (6):
scale height of stellar disk in pc. Column (7): galacto-
centric radius in kpc. Column (8): spatial resolution of
simulation in pc.

smaller simulation box) as we move from outer (lower density) to inner (higher density) galactic regions. At higher

densities, both thermal and dynamical length scales are smaller. For each model, we tested varying simulation box

sizes, and the values ultimately adopted were optimized such that resolution is sufficiently high while still providing

a large enough horizontal area such that superbubbles do not fill the entire horizontal domain. For our standard

simulations, the horizontal box size, Lx and Ly, decreases from 2048 pc for model R16, to 1024 pc for model R8,

to 512 pc for models R2 and R4. In Appendix A, we briefly discuss the role of box size and show the resolution

dependence of our results to demonstrate convergence.

Finally, we note that although a value of R0 is adopted for each model, this is only used in setting the local background

rotational velocity and the shape of dark matter halo gravity; the simulations are all local, and in principle could equally

well describe similar conditions within a dwarf as a massive spiral (at a given metallicity).

3. OVERALL EVOLUTION

In previous papers (KO17 and KO18), we have presented the overall evolution of the Solar neighborhood model

(R8 in this paper). The evolution exhibits multiple feedback cycles, reaching a quasi-steady state in which the SFR is

self-regulated by stellar feedback. We will present a comprehensive analysis of the suite of simulations presented here

in context of the theory of pressure-regulated, feedback-modulated star formation in a separate paper (Ostriker & Kim

in prep.; see also Ostriker et al. 2010; Ostriker & Shetty 2011; Kim et al. 2011). In this paper, our focus is mainly

on outflows from the main gas layer, above the scale height of gas. However, here we also briefly cover star formation

self-regulation since the bursts and lulls of star formation are responsible for the cyclic behavior of outflow/inflow.

As soon as the simulation begins, the initial turbulent energy begins to dissipate and the denser gas cools to form

the cold medium. Material falls vertically and dense, cold cloud complexes form and collect near the midplane. Star

clusters are born in gravitationally collapsing parts of the cloud complexes; these heat the ISM by emitting UV

radiation and drive turbulence through SN explosions, restoring the lost vertical support. As the disk puffs up, the

overall SFR drops. The now-reduced stellar feedback cannot offset cooling and turbulent dissipation, so that gas

falls back to the midplane and the next star formation event follows. The cycle repeats, with the system entering a

self-regulated, quasi-steady state.

In this state, the time-averaged total vertical pressure support (sustained by star formation feedback) balances the

vertical weight of gas (as shown in simulations of Kim et al. 2013; Kim & Ostriker 2015b; see also Thompson et al.

2005; Ostriker et al. 2010; Ostriker & Shetty 2011; Kim et al. 2011; Shetty & Ostriker 2012; Faucher-Giguère et al.
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Table 2. Time Scales and Relevant Measured Quantities

Model torb tosc,n tosc,a tdep H σz,eff ngas ρtot Σgas ΣSFR

(Myr) (Myr) (Myr) (Gyr) (pc) (km s−1) (cm−3) (M� pc−3) (M� pc−2) (M� kpc−2 yr−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

R2 61 32 23 6.6 · 10−2 3.3 · 102 64 7.7 1.3 74 1.1

R4 1.1 · 102 51 37 0.23 3.4 · 102 41 1.4 0.50 30 0.13

R8 2.2 · 102 1.2 · 102 76 2.1 3.5 · 102 18 0.86 0.12 11 5.1 · 10−3

R16 5.2 · 102 4.5 · 102 3.1 · 102 31 8.1 · 102 11 6.1 · 10−2 7.1 · 10−3 2.5 7.9 · 10−5

LGR2 1.2 · 102 52 48 0.15 3.6 · 102 43 5.1 0.31 75 0.49

LGR4 2.0 · 102 87 80 0.42 4.2 · 102 30 1.5 0.11 38 9.0 · 10−2

LGR8 4.1 · 102 2.2 · 102 1.7 · 102 3.3 6.0 · 102 17 0.37 2.5 · 10−2 10 3.2 · 10−3

Note— Column (2): orbit time (Equation 5). Column (3): vertical oscillation time defined by Equation 7 using numerically
measured gas scale height (Column 6) and vertical velocity dispersion (Column 7). Column (4): vertical oscillation time defined
by Equation 6 using total mass density at the midplane (Column 9). Column (5): gas depletion time defined by the ratio of gas
surface density (Column 10) and SFR surface density (Column 11). Column (6): gas scale height (Equation 8). Column (7):
effective vertical velocity dispersion (Equation 9). Column (8): midplane number density of gas. Column (9): total midplane
mass density of gas, stars, and dark matter. Column (10): gas surface density. Column (11): SFR surface density. Numerically
measured quantities are averaged over 0.5 torb < t < 1.5 torb.

2013; Hayward & Hopkins 2017). However, instantaneously there is always a mismatch between “supply” (pressure

from feedback) and “demand” (weight from gravity). Especially, the injection of energy and momentum from SN

feedback is highly concentrated in space and time, leading to an overshoot (e.g., Benincasa et al. 2016; Orr et al.

2019). The resulting gas outflows carry the excess momentum and energy into the extraplanar region (above the gas

scale height), and a portion is eventually vented to the CGM. As we shall show (see also KO18), in our simulation

suite the hot gas created by SN shocks is mainly responsible for energy and momentum delivery to the extraplanar

region and beyond, while the cooler gas delivers significant mass beyond the disk scale height. The self-regulation and

outflow cycle is evident in all models, with some qualitative differences.

To help visualize feedback-driven outflows in the simulation suite, Figure 1 and Figure 2 respectively show density

and temperature slices at y = 0 for snapshots at t/torb = 0.7. Also, in Figure 1 we show velocity streamlines color

coded by outward vertical velocity,

vout ≡ vz sgn(z). (4)

The hot, fast outflows preferentially vent through low density chimneys, carved out of the denser warm ISM by

superbubble breakout events. At the same time, a highly dynamic fountain of clumpy, cooler gas coexists with hot

gas in the extraplanar region, and is both inflowing and outflowing. Turbulent flows of cool gas close off chimneys,

limiting hot outflows and leading to significant interaction between hot winds and cool fountains.

Figure 3 shows the horizontally-averaged vertical mass flux, 〈ρvout〉x,y, from all models as a time series. The space-

time diagram of mass flux profiles demonstrates the cycles of outflow/inflow. Outward fluxes (〈ρvout〉x,y > 0) are in

red while inward fluxes (〈ρvout〉x,y < 0) are in blue. We separate gas using three temperature bins, T < 2× 104 K for

cool (left column)5, 2× 104 K < T < 5× 105 K for intermediate (middle column), and T > 5× 105 K for hot gas (right

column). For reference, we plot H and 2H as solid and dashed lines, respectively, in the middle column, where H is

the instantaneous scale height of gas (the mass-weighted dispersion of vertical gas positions; see Equation 8).

Focusing on the left column, where we show the “cool” component, cyclic behavior of alternating outflow and inflow

is evident for all models. The evolution is more regular for R16, and gets more complex at higher surface densities. For

5 The cool phase in this paper includes cold/unstable/warm gas (or two-phase gas) as defined in KO17 and KO18. Although we do not
explicitly distinguish cold, unstable, and warm gas as in previous work, the fractions of cold and unstable components are negligible at
|z| > H. Therefore, the cool phase in this paper is essentially equivalent to the warm gas of KO18.
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Figure 1. Snapshots from all of the simulations at t/torb = 0.7. The animation of this figure is available in the online journal
as well as at https://changgoo.github.io/tigress-wind-figureset/movies.html. Number density slices at y = 0 are shown together
with velocity streamlines (also color coded by outward vertical velocity vout = vz sgn(z)). Models are arranged in order of
decreasing time-averaged ΣSFR from left to right. Spatial scales in each panel are normalized by the time-averaged scale height
H of each model (see Column (6) in Table 2). Note that the full extent of the simulation domain is typically larger than what
is shown in this figure; Lx/H and Ly/H are 1-2 while Lz/(2H) is 6-10. An animation is available in the online journal as well
as at https://changgoo.github.io/tigress-wind-figureset/movies.html. The video begins at t/torb = 0 and ends at t/torb = 1.48.
The realtime duration of the video is 20 seconds.

R8, LGR4, and LGR8, the evolution is still quite cyclic, while R2, R4, and LGR2 show complex interaction between

outflows and inflows and generally less cyclic evolution, especially for the gas near the midplane.

Qualitative differences in the cyclic behavior among models can be understood from competition between key time

scales: the vertical oscillation time tosc and the star cluster evolution time scale tevol ∼ 40 Myr (Leitherer et al. 1999).

The former controls the self-regulation cycle because gas pushed outward by feedback from a burst of star formation

https://changgoo.github.io/tigress-wind-figureset/movies.html
https://changgoo.github.io/tigress-wind-figureset/movies.html
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Figure 2. Same as Figure 1, but for temperature slices. An animation is available in the online journal as well as at
https://changgoo.github.io/tigress-wind-figureset/movies.html. The video begins at t/torb = 0 and ends at t/torb = 1.48. The
realtime duration of the video is 20 seconds.

returns after tosc and participates in the next star formation event. The latter sets the duration of energy/momentum

injection from a given star formation event, during which star formation is generally reduced.

In Table 2, we list three time scales along with relevant quantities measured from simulations to obtain these time

scales. Column (2) gives the orbital period of galactic rotation (torb) with the usual definition:

torb ≡
2π

Ω
= 120 Myr

(
Ω

50 km s−1 kpc−1

)−1

. (5)

For tosc, we list both a measure from the simulation and an analytic estimate in Columns (3) and (4), respectively.

The vertical gravity is nearly linear gz ≈ −4πGρtotz for the majority of gas since the gas scale height is smaller than

or comparable to the stellar height (z∗) and dark matter scale length (R0) assumed in our potential model (except for

model R16). The collisionless vertical oscillation time can then be approximated only in terms of the total midplane

https://changgoo.github.io/tigress-wind-figureset/movies.html
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Figure 3. Space-time diagrams of the horizontally averaged mass flux 〈ρvout〉x,y. Outward fluxes (〈ρvout〉x,y > 0) are in red
while inward fluxes (〈ρvout〉x,y < 0) are in blue. Each row represents different models, and each column represents different
phases: left for cool (T < 2× 104 K), middle for intermediate (2× 104 K < T < 5× 105 K), and right for hot (T > 5× 105 K).
Time is normalized by orbital time (see Column (2) in Table 2; typically torb ∼ 2tosc,n except R16). In the middle column, we
plot one and two gas scale heights (see Equation 8 for definition of H) as solid and dashed black lines, which will be used to
measure instantaneous fluxes through surfaces at H and 2H. While cool extraplanar gas is a fountain with alternating outflow
and inflow (left column), hot extraplanar gas flows out consistently as a wind (right column).
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density ρtot = ρgas + Σ∗/(2z∗) + ρdm as

tosc,a ≈
2π

(4πGρtot)1/2
= 37 Myr

(
ρtot

0.5M� pc−3

)−1/2

. (6)

Note that the midplane density of the gas ρgas (or ngas = ρgas/(µmH)) is calculated by taking the mean of density

in the two horizontal planes at z = ±∆z/2. Since the prediction for the scale height under linear gravity is H =

σz/(4πGρtot)
1/2, an alternative definition of the vertical oscillation time measurable directly from gas properties is

tosc,n ≡
2πH

σz,eff
= 46 Myr

(
H

300 pc

)( σz,eff

40 km s−1

)−1

. (7)

Here, we calculate H and σz,eff from the mass-weighted height and effective velocity dispersion measured in the

simulation, where they are respectively defined by

H ≡
(∫

ρz2dV∫
ρdV

)1/2

, (8)

and

σz,eff ≡

(∫ [
ρv2
z + P +B2/(8π)−B2

z/(4π)
]
dV∫

ρdV

)1/2

. (9)

Note that the effective vertical velocity dispersion includes the contributions from turbulent, thermal, and magnetic

stresses. The values are all time averages over 0.5torb < t < 1.5torb. tosc,n ∼ 0.5torb for our models, except R16.

If tosc is sufficiently longer than tevol (e.g., for R16), a major star formation event cannot occur until after previously

blown-out gas falls back. If tosc is smaller than or comparable to tevol (e.g., R2, R4, and LGR2), the situation is more

complicated. Since each major star formation event continuously injects energy/momentum for tevol (SN rates do not

decline sharply for tevol), gas that is launched and returns after tosc can be re-launched before participating in the next

star formation event. The self-regulation cycle is delayed until feedback shuts off after ∼ tevol.

The distinct oscillatory behavior seen in Figure 3 is in part due to the limited horizontal domain of the TIGRESS

simulations. Because the natural horizontal correlation scale of star formation is not extremely small compared to

the size of our simulation domain, averages at a given time will not statistically sample many independent regions at

different stages of the evolutionary cycle. Synchronization within a local patch can also be enhanced if initial conditions

tend to trigger a collapse of the entire disk, as in models LGR2 and LGR4. For LGR4, where tosc > tevol, the prominent

oscillation cycle persists for a long time. However, for LGR2, even though the initial collapse induces very coherent

first outflows, the feedback regulation cycles become highly irregular since tosc ∼ tevol so that the inflowing gas keeps

interacting with outflows from previous feedback events. On the other hand, while the early evolution of LGR8 is

quite irregular, it eventually shows a fairly regular oscillation at later times since tosc � tevol. Overall, the late time

evolution (t > 0.5torb) and regularity of the cyclic behavior are self-consistently set by the fundamental time scales of

the system.

The orbital time of galactic rotation torb is relevant to the growth of the large scale gravitational instability, due to

the effects of epicyclic oscillations and shear (e.g., Goldreich & Lynden-Bell 1965; Elmegreen 1987; Kim & Ostriker

2001; Kim et al. 2002). In general, the gravitational timescale tg ∼ σ/(GΣ) must be shorter than the epicyclic or

shear times (∼ torb) for gravitational instabilities to grow. Typically, tg ∼ torb in normal galaxies, i.e. the Toomre

parameter is order-unity (Toomre 1964). If gravitational instability were the only important dynamical process acting

on large scales, the inevitable result would be a strong starburst. However, in our simulations, torb does not control star

formation by itself because tosc, tevol . torb, tg, such that coherent structures at large scales are not able to continue

growing for very long periods. Instead, they are destroyed by feedback before high star formation efficiency is achieved.

We note, however, that in model R2, torb, tg ∼ tevol, so that feedback is less able to limit large scale gravitational

instability. In reality, conditions with very short orbital and gravitational timescales may also be subject to strong

radial flows. Following this in detail would require global modeling, but unfortunately this is not yet tractable with

the same uniformly high spatial resolution as our simulations.

Finally, we note that the gas depletion time is generally longer than tosc, tevol, and torb, so that secular evolution

has a minimal effect on the average properties in the self-regulated state.
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In Figure 3, it is generally possible to link cool outflows (left) with the outflows of intermediate (middle) and hot

(right) phases. Simultaneous, distinct outflows in all phases are realized when there is breakout of superbubbles

produced by spatially and temporally correlated SNe. In an “outflowing” epoch, the hot outflows easily reach the

domain boundaries without significant loss of mass flux. However, the cool gas launched with the hot gas after a burst

eventually falls back. That is, red turns to blue for the cool gas. Notably, even during an “inflowing” epoch of the cool

gas, the high-entropy hot gas continues to rise. That is, the hot gas shows only outflows (red), with no returning mass

flux. We note, however, that even if there is a reasonably high SN rate producing hot gas, hot outflows are sometimes

blocked by returning inflows of cool gas, and cannot reach the boundary (see e.g., R2 (top row) at t/torb ∼ 1). Thus,

successful breakout is not solely determined by the SFRs (or SN rates), but is subject to the complex interaction

between superbubble expansion and inflowing gas from previous events (sometimes in neighboring regions).

To summarize: outflows in our simulation suite show both regular and complex behaviors, depending on the model

parameters (Figure 3). In the extraplanar region, outflows and inflows coexist in different phases, which we resolve in

our simulations (Figure 1 and Figure 2). In what follows, we explain how we characterize key properties of outflows

and relate them to global properties, thereby deriving scaling relations.

4. CHARACTERIZATIONS OF MULTIPHASE OUTFLOWS

In this section, we present characterization of multiphase outflows using outward mass, momentum, energy, and

metal fluxes, separating the different thermal phases. We first present results for time evolution of outward fluxes

(Section 4.1) and metal properties (Section 4.2) through surfaces (both upper and lower sides of the disk) at different

heights, including two fixed heights at 500 pc and 1 kpc, and two time-dependent heights using the instantaneous

gas scale height at H and 2H.6 We then show time averaged vertical profiles of loading factors (Section 4.3), outflow

velocities, and metal properties (Section 4.4). Figures and Tables in this section are for model R4 or for values at

|z| = H. Figures for other models and the data for Tables at different heights are available at https://changgoo.github.

io/tigress-wind-figureset/figureset.html and doi:10.5281/zenodo.3872049.

4.1. Outflow Fluxes

The instantaneous outflow fluxes of each thermal phase through a horizontal surface at height z are calculated by

summing up the vertical fluxes of cells with a positive outward vertical velocity vout > 0 and temperature in the

specified temperature range of each phase. Formally, the outflow flux of the quantity ‘q’ in phase ‘ph’ is defined by

summing up the phase-selected flux over the horizontal domain with an area of LxLy as

Fq,ph =
∑
i,j

Fq(i, j, k; t)Θ(C)
∆x∆y

LxLy
, (10)

where (i, j, k) is grid zone index, ∆x = ∆y is grid resolution (Column (8) in Table 1), and Θ(C) is the top-hat-like

filter that returns 1 if the conditional argument is true or 0 otherwise. Here, the conditional argument is vout > 0 for

the outflowing gas and T in three temperature bins T < 2× 104 K, 2× 104 K < T < 5× 105 K, and T > 5× 105 K for

the cool, intermediate, and hot phases, respectively. We consider four physical quantities q = M , p, E, and MZ (we

simply use Z in the subscript for succinctness; e.g., FZ is not metallicity flux but metal mass flux) to denote mass,

z-momentum, energy, and metal mass. The corresponding vertical outgoing fluxes are defined by

FM =ρvout (11)

Fp=ρv2
out + P (12)

FE =ρvout

(
1

2
v2 +

γ

γ − 1
c2s

)
, (13)

FZ =ρZvout (14)

where v2 = (v · v), c2s ≡ P/ρ, and γ = 5/3, while other symbols have their usual meaning. We note that Equation 12

and Equation 13 include both the kinetic and thermal components of the vertical momentum and total energy fluxes,

6 The main motivation of this work is to report emergent multiphase outflow properties from resolved, self-consistent simulations of the
star-forming ISM. In this undertaking, there is a tension between competing desiderata. On the one hand, it may be desired to measure
outflowing gas properties at heights far from the disk midplane where interactions with the “ISM” gas have been left behind. Larger
distances are also closer to the resolution of big-box cosmological simulations. On the other hand, there is a countervailing need to choose
a height closer to the midplane where the local approximation is valid (and climbing out of the global potential has not affected the outflow
velocities). We shall show that interactions are minimized above ∼ 2H, while the local assumption is reasonable (with the local potential
dominating over the global disk + halo potential and the flow streamlines not affected by global geometry) up to H or 2H. Locations
between H and 2H are thus a good compromise for making our measurements of outflow properties.

https://changgoo.github.io/tigress-wind-figureset/figureset.html
https://changgoo.github.io/tigress-wind-figureset/figureset.html
http://doi.org/10.5281/zenodo.3872049
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Figure 4. Time evolution of outward fluxes in model R4. Figures for other models are available at https://changgoo.github.io/
tigress-wind-figureset/figureset.html. The fluxes are measured through surfaces at |z| = H (red), 2H (light red), 0.5 kpc (blue),
and 1 kpc (light blue). Each column represents different phases: left for cool, middle for intermediate, and right for hot. Each
row represents flux of a different quantity (see Equation 10 for definition): (a)-row: mass flux in M�/(kpc2 yr) (Equation 11);
(b)-row: z-momentum flux in (M� km s−1)/(kpc2 yr) (Equation 12); (c)-row: energy flux in erg/(kpc2 yr) (Equation 13); and
(d)-row: total metal flux in M�/(kpc2 yr) (Equation 14). The grey solid lines are corresponding reference fluxes (Fref) defined
by Equation 15, representing (a) SFR surface density and (b) momentum, (c) energy, and (d) metal injection rates by SNe
per horizontal area. Mass is predominantly carried by the cool component, while energy is predominantly carried by the hot
component.

ignoring the magnetic terms that are negligible in outflows. We analyze the total momentum flux instead of just

the kinetic term separately since the contribution from the thermal pressure in the hot gas is substantial in outflows.

The thermal pressure in cool gas is largely set by the balance between photoheating and cooling (rather than being

driven by SNe), but is negligible in outflows. The simulation has nonzero metallicity in the beginning (ZISM,0 = 0.02),

and the metal flux consists of two origins, metals from the ISM and newly injected by SNe (ZSN = 0.2). Although

we separately trace the total and SN-origin metals using independent passive scalar variables, separation between

https://changgoo.github.io/tigress-wind-figureset/figureset.html
https://changgoo.github.io/tigress-wind-figureset/figureset.html
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SN-origin and ISM-origin metals is non-trivial due to enrichment of the ISM and recycling. We discuss this in more

detail in the next section (Section 4.2). For now, we show the total metal flux.

Figure 4 plots, from top to bottom, the horizontally-averaged mass, momentum, energy, and metal fluxes of model

R4. We report combined fluxes through both upper and lower horizontal surfaces at a fixed height (dark and light

blues for |z| = 0.5 and 1 kpc, respectively) or at a time dependent height (dark and light reds for |z| = H and 2H,

respectively; see grey solid and dashed lines in the middle column of Figure 3 for the time variation of the scale

heights). From the left to right column, we show cool, intermediate, and hot outflows separately.

From Figure 4, it is evident that the features of multiphase outflows at launch seen in the Solar neighborhood

TIGRESS model (R8) (as reported by KO18) are generic across galactic conditions considered in our model suite. The

cool component delivers most of the mass to the extraplanar region; in these simulations this cool gas subsequently

returns to the midplane (the cool “fountain” is clear in the left column of Figure 3), but in a shallower global potential

this cool outflow could escape. The hot component carries most of energy, and escapes from the simulation domain as

a wind. The intermediate component is subdominant in all fluxes. Due to the short cooling time of the intermediate

component, a significant fraction of the outflow in this temperature range cools and mixes into the cooler gas in the

course of its evolution (e.g., Vijayan et al. 2020, for more quantitative analyses).7 The fluxes, especially for the cool

component, generally decrease with distance from the midplane. Occasionally (e.g., at around t ∼ 0.7torb; see also

Figure 3), cool inflows are strong enough to shut off outflows nearly completely, showing dramatic drops from lower

heights (|z| = H or 500 pc; darker lines) to upper heights (|z| = 2H or 1 kpc; lighter lines).

In every panel of Figure 4, the gray solid line shows a corresponding reference flux calculated based on the instan-

taneous SN rate, defined by

Fq,ref ≡ qref
ṄSN

LxLy
. (15)

Here, ṄSN is the instantaneous SN rate calculated with an adaptive time window, within which the number of SNe is

100. The coefficient qref adopted in each reference flux is set based on simple physical considerations, as follows:

Mref = m∗= 95.5M� (16)

pref = ESN/(2vcool) = 1.25× 105M� km s−1 (17)

Eref = ESN = 1051 erg (18)

MZ,ref = MejZSN = 2M�. (19)

Here, we adopt a total mass of new stars formed for each SN of m∗ = 95.5M� (Kroupa 2001), a SN explosion energy of

ESN = 1051 erg, a mean mass in ejecta from each SN of Mej = 10M�, and a mean SN ejecta metallicity of ZSN = 0.2.

We note that the combination of Equation 15 and Equation 16 is equivalent to a reference mass flux of FM,ref = ΣSFR,

the mean SFR per unit area averaged over the star cluster life time. Because SNe from a given star cluster persist

over tevol ∼ 40 Myr for a fully-sampled IMF, the reference fluxes defined by Equation 15 depend on the SFR over the

last 40 Myr and are therefore smoother than they would be if an instantaneous (or time-delayed) value of ΣSFR were

employed, while still giving the same long-term average.

For the reference momentum per SN, we adopt a value ESN/vcool with vcool = 200 km s−1, which represents the

spherical momentum at the end of the Sedov stage when a SN blast wave cools and a shell forms (Draine 2011; Kim

& Ostriker 2015a), also applying the geometric factor 1/2 to account for the vertical component of midplane-centered

sources (Ostriker & Shetty 2011). An alternative reference momentum choice that is sometimes adopted is the initial

SN ejecta momentum pej ≡ (2MejESN)1/2 = 3.2 × 104M� km s−1. This (reduced by a factor 2) would be more

instructive choice if the SNR evolution remains in the free expansion stage until it reaches the height where a wind

is launched. We generally find that this is not the case. We note that pref is an order of magnitude greater than the

vertical momentum from initial SN ejecta, pej/2.

From a large number of recent investigations of individual SNR evolution in inhomogeneous environments (e.g., Kim

& Ostriker 2015a; Martizzi et al. 2015; Iffrig & Hennebelle 2015; Walch & Naab 2015), and of superbubble evolution

driven by multiple SNe (e.g., Kim et al. 2017a; Fielding et al. 2018; Gentry et al. 2019; El-Badry et al. 2019), there is

an emerging consensus in the community that the momentum injection to the ISM per event is relatively insensitive to

7 The exception is model R16 (an outer disk model with the lowest surface density), in which the intermediate component contains mass,
momentum, and energy comparable to those in the hot component at launching. Also, the intermediate-temperature gas behaves more or
less similarly to the hot component due to the increased cooling time at the low densities in this model.
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ambient conditions. In particular, the momentum depends only very weakly on density, as shown in earlier uniform-

background simulations (e.g. Cioffi et al. 1988; Blondin et al. 1998; Thornton et al. 1998). The terminal momentum

per SN from clustered SNe is comparable to that from a single SN event as long as shocks from individual SNe remain

supersonic, but can be factor of a few smaller if blast waves from individual SNe become subsonic before reaching

the shell (e.g., Kim et al. 2017a; El-Badry et al. 2019). Since most SNe are clustered, with the reference value of

Equation 17 we expect the kinetic momentum loading near the midplane to smaller than unity, and to be lower in

models with higher SFR.

The dimensionless ratios between measured and reference fluxes are often termed loading factors (e.g., Somerville &

Davé 2015; see Section 4.3). Although actual and reference fluxes in Figure 4 share similar evolutionary trends, the

reference fluxes do not show the same large modulations as some of the measured fluxes. As we discussed in Section 3,

complicated interaction between outflows and inflows makes one-to-one correspondence between strength of feedback

(outflow driving) and emergent fluxes non-trivial (see also Appendix B).

4.2. Metallicity and Enrichment of Outflows

To understand the role of SN feedback in metal evolution within and beyond galaxies, simply measuring the total

metal flux is insufficient. Every SN explosion injects metal mass ZSNMej = 2M�, some of which goes directly to the

extraplanar region as outflows, and some of which mixes with the ISM near the midplane, which has initialized with

solar metallicity ZISM,0 = 0.02. At a given epoch, outflowing gas can thus originate from one of three components: the

ISM at the beginning of the simulation, Ṁ(ISM→ out), SN ejecta from previous SN events that have mixed into the

ISM, Ṁ(SN→ ISM→ out), and SN ejecta from current SN events, Ṁ(SN→ out). Note that Ṁ(SN→ ISM→ out)

in principle includes metals recycled from fountain flows, which we do not separate track in this study. The total mass

and metal outflow rates can be respectively written as

Ṁ = Ṁ(ISM→ out) + Ṁ(SN→ ISM→ out) + Ṁ(SN→ out) (20)

ṀZ =ZISM,0Ṁ(ISM→ out) + ZSNṀ(SN→ ISM→ out) + ZSNṀ(SN→ out). (21)

In TIGRESS, we employ passive scalars for total and SN-injected metals, with densities that evolve under the mass

conservation equation with a given velocity field. The total metal scalar allows us to measure ṀZ , while the SN-injected

scalar traces the sum of last two terms ZSN[Ṁ(SN→ ISM→ out) + Ṁ(SN→ out)] in Equation 21, corresponding to

the “cumulative” SN-origin metal flux.

While not directly calculated, the “instantaneous” SN-origin metal flux, ZSNṀ(SN→ out), is of great interest to

quantify how much of injected metals go promptly into outflows and how enriched the outflow is compared to the ISM.

We use the following procedure to estimate this quantity. Theoretically, the instantaneous metallicity of ISM-origin

outflows is

ZISM ≡
ZISM,0Ṁ(ISM→ out) + ZSNṀ(SN→ ISM→ out)

Ṁ(ISM→ out) + Ṁ(SN→ ISM→ out)
, (22)

while the mean metallicity of outflows,

Z =
ṀZ

Ṁ
, (23)

is directly measured in the simulation using mass and total metal scalar fluxes at specified z. Combining with

Equation 20 and Equation 21, we obtain the instantaneous SN-origin mass outflow rate

Ṁ(SN→ out) =
Z − ZISM

ZSN − ZISM

Ṁ ≡ fSN
M Ṁ (24)

and the instantaneous SN-origin metal outflow rate

ṀZ(SN→ out) = ZSNṀ(SN→ out) =
ZSN

Z
fSN
M ṀZ ≡ fSN

Z ṀZ . (25)

Equation 24 and Equation 25 define the instantaneous SN-origin mass and metal fractions in outflows, fSN
M and

fSN
Z , respectively. In the rest of the paper, we will use the superscript “SN” to refer to the instantaneous SN-origin

component, e.g., ṀSN
out and ṀSN

Z,out for Ṁ(SN→ out) and ṀZ(SN→ out), respectively, and FSN

M and FSN

Z for the

corresponding mass and metal fluxes.
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As a proxy for the instantaneous metallicity of ISM-origin outflows in Equation 22, we use the instantaneous

metallicity of the ISM itself. In practice, in the simulation we measure the ISM metallicity based on the cool phase

gas within |z| < 50 pc; this defines ZISM (we find no strong variation with different thickness used in this definition if

smaller than the scale height). For a given ZISM, we use the phase-separated mean outflow metallicity (Zph) and mass

outflow rate (Ṁph) to obtain fSN
M,ph and fSN

Z,ph phase-by-phase. Note that our definition for ZISM is not a perfect tracer

of the instantaneous metallicity in ISM-origin outflows, so that occasionally we get negative fSN
M ; we simply set it to

zero in such occasions. This occurs only for the cool outflow at |z| = H (at most 20% of the time). R16 is the only

exception, where the genuine cool ISM is easily pushed out to large distance so that Zcool ≤ ZISM for most snapshots

at all heights (up to 80% of the time). For this reason, we exclude R16 in analysis regarding SN-origin metals of cool

outflows (e.g., Table 5 and Figure 8). For the hot gas, fSN
M is always positive.

Given instantaneous outflow and ISM metallicities, we obtain the instantaneous outflow enrichment factor for each

phase ‘ph’

ζph ≡
Zph

ZISM

. (26)

Figure 5 shows, from the top to bottom, (a) the mean metallicity of outflow along with the instantaneous ISM

metallicity (solid dashed), (b/c) the fractions of instantaneous SN-origin mass and metal in the outflow, and (d) the

instantaneous outflow enrichment factor for R4. The ISM is gradually enriched, and cool outflows consist mostly of

the pre-enriched ISM (ζcool ∼ 1). The hot outflow is more metal-enriched than cooler components and the ISM by

a factor of 1.5-2. The contribution of recent-SN-origin metals to the outflowing metal flux is ∼ 30-60% in the hot

outflow and ∼ 10% in the cooler components.

4.3. Loading Factors

We now calculate loading factors; the ratios of outgoing mass, momentum, energy, and metal to mass locked into

stars and momentum, energy, and metal injected by SNe. With the definition of the reference outflow fluxes in

Equation (15), we get outflow loading factors simply by

ηq ≡
Fq
Fq,ref

, (27)

where q = M , p, E, and Z. The definitions of ηM and ηE are identical to the conventional definition (e.g., Chevalier

& Clegg 1985).

In principle, Equation 27 can give instantaneous loading factors as a function of time, but care needs to be taken

with this. The quantity of interest is the outflow rate normalized by the injection (or star formation) rate that is

responsible for the outflow. The injection (or star formation) generally occurs near the disk midplane, while the

outflow is measured at a certain height above the midplane. There is inevitably a time delay between injection and

outflow rates. Therefore, instantaneous loading factors measured by Equation (27) can be misleading regarding the

physical impact of stellar feedback. This issue is more serious when (1) star formation is more bursty, and the SFR

rather than SNR is used for the reference flux8 and (2) the distance between locations where feedback injection (or

star formation) and outflow rates are measured is larger. One would need to either carefully model the reference

fluxes including determination of an appropriate time delay in computing instantaneous loading factors, or else report

time-averaged loading factors with averaging timescale longer than the time delay and timescale of the feedback cycle

(e.g., Muratov et al. 2015).

Taking advantage of the long duration of our simulation suite (covering a few feedback/outflow cycles), we report the

ratio of time-averaged flux to time-averaged reference flux as time-averaged loading factors. For model R4, Figure 6

shows the vertical profiles of the time-averaged loading factors, as well as temporal variation ranges. We note that in

contrast to Figure 4, rather than the total metal loading factor we now show the instantaneous SN-origin metal loading

factor ηSN
Z (using Equation 25) in the bottom panel of Figure 6. We also note that the reference fluxes are not height

dependent, so that Figure 6 essentially shows rescaled flux profiles. We plot as symbols with errorbars the mean and

8 For example, Martizzi (2020) recently reported an large instantaneous mass loading factor (∼ 100), which they suggested was due to
clustered star formation under self-gravity. However, from Figures 7 and 10 in Martizzi (2020), the peak in the instantaneous mass loading
factor from Model S100 WSG at t/tdyn ∼ 3 occurs at both a maximum of the outflow rate and a minimum of the SFR. If one simply
reads off the peaks of both outflow and SFRs and takes the ratio, the mass loading factor is 0.1, comparable to their non-self-gravitating
(non-clustering) model. The drop in star formation (after an initial big burst) is the major reason for the high instantaneous mass loading
factor.
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Figure 5. Time evolution of metal properties in the outflow of model R4. Figures for other models are available at https:
//changgoo.github.io/tigress-wind-figureset/figureset.html. Each quantity is measured through a surface at |z| = H (red), 2H
(light red), 0.5 kpc (blue), and 1 kpc (light blue). Each column represents different phases: left for cool, middle for intermediate,
and right for hot. (a)-row: mean metallicity Z of the outflows along with the instantaneous ISM metallicity ZISM (black dashed,
from the cool gas within |z| < 50 pc). (b)-row: ratio of instantaneous SN-origin outflowing mass flux to total. (c)-row: ratio
of instantaneous SN-origin outflowing metal flux to total. (d)-row: instantaneous outflow enrichment factor. See Equation 20 -
Equation 26 for definitions. The metallicity of cool outflowing gas is essentially the same as that of the ISM near the midplane,
whereas hot outflowing gas is significantly enriched by the ejecta from recent SNe.

standard deviation of loading factors measured at the instantaneous H (circle) and 2H (square), which are generally

in good agreement with the values from the time averaged profiles at the mean H and 2H. In Appendix B, we make

use of the time-delayed reference fluxes to find the mean time delay and calculate instantaneous loading factors. The

time averaged profiles of the instantaneous loading factors are almost identical with Figure 6, providing reassurance

of the robustness of mean loading factors we report here.

https://changgoo.github.io/tigress-wind-figureset/figureset.html
https://changgoo.github.io/tigress-wind-figureset/figureset.html
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Figure 6. Vertical profiles of loading factors in model R4. Figures for other models are available at https://changgoo.github.
io/tigress-wind-figureset/figureset.html. Rows show (a) mass, (b) z-momentum, (c) energy, and (d) SN-origin metal loading
factors. These loading factors represent fluxes carried by outflowing gas relative to time-averaged reference fluxes defined by
Equation 15. The solid line denotes the mean value 〈q〉t at a given height averaged over 0.5 < t/torb < 1.5. The shaded area
represents temporal variations at each height using the standard deviation in temporal fluctuations δq, i.e., 〈q〉t exp(±δq/ 〈q〉t).
The symbols with errorbars denote the mean and fractional temporal variation range of instantaneous measurements at |z| = H
and 2H. The mass in outflows is primarily loaded in the cool gas, but this declines with height as cool gas velocities are
insufficient to escape and the flow turns around as a fountain. The energy is primarily loaded in a hot wind; while velocities are
high enough to escape, the energy loading declines with z due to interactions with the warm gas.

In Figure 6, we see a steep drop of all loading factors of the cool phase from the midplane to H. The hot (and

intermediate) phase loading factors peak at ∼ 50 pc (most SNe explode below this height). Above |z| ∼ 50 pc, outflow

fluxes gradually drop. The decreasing trend is moderated above H, but is still significant in cooler phases for mass and

hotter phases for energy. The mass loading factor of the cool phase decreases with |z| as lower velocity components

drop out (see Figure 7 and KO18). The energy loading factor of the hot phase decreases from a maximum slightly

above the midplane as some of the energy (mostly thermal) in the hot gas transferred to cooler phases, from which

it is quickly radiated away (Vijayan et al. 2020). The intermediate phase is subdominant for all loading factors at all

heights (except R16).

The momentum loading factor of the sum of the cool and hot components near the midplane is ηp ∼ 0.5, implying

that SNRs have built up momentum exceeding the initial ejecta momentum (which would yield ηp ∼ 0.1). We note

that ηp is not as large as unity since the terminal momentum per SN from clustered SNe is generally smaller than pref

https://changgoo.github.io/tigress-wind-figureset/figureset.html
https://changgoo.github.io/tigress-wind-figureset/figureset.html
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Table 3. Time averaged fluxes and loading factors at |z| = H

Model phase FM Fp FE FZ FSN
Z ηM ηp ηE ηZ ηSN

Z

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

R2 cool 0.75 51 7.3 · 1046 2.9 · 10−2 3.2 · 10−3 0.69 3.5 · 10−2 6.4 · 10−3 1.3 0.14

int 6.3 · 10−2 10 2.8 · 1046 2.6 · 10−3 5.6 · 10−4 5.8 · 10−2 7.1 · 10−3 2.5 · 10−3 0.11 2.5 · 10−2

hot 0.13 1.4 · 102 2.8 · 1048 9.6 · 10−3 6.2 · 10−3 0.12 0.10 0.24 0.42 0.27

R4 cool 0.27 12 1.1 · 1046 8.3 · 10−3 4.4 · 10−4 2.2 7.7 · 10−2 8.2 · 10−3 3.3 0.17

int 1.4 · 10−2 1.9 4.2 · 1045 4.8 · 10−4 7.2 · 10−5 0.12 1.2 · 10−2 3.3 · 10−3 0.19 2.8 · 10−2

hot 2.7 · 10−2 19 2.2 · 1047 1.3 · 10−3 6.0 · 10−4 0.22 0.12 0.17 0.51 0.23

R8 cool 3.3 · 10−2 0.79 4.4 · 1044 7.2 · 10−4 2.1 · 10−5 6.4 0.12 8.2 · 10−3 6.7 0.20

int 1.3 · 10−3 0.12 2.3 · 1044 3.0 · 10−5 2.9 · 10−6 0.25 1.8 · 10−2 4.3 · 10−3 0.28 2.7 · 10−2

hot 1.3 · 10−3 0.67 5.5 · 1045 4.1 · 10−5 1.5 · 10−5 0.26 0.10 0.10 0.39 0.14

R16 cool 5.5 · 10−3 8.5 · 10−2 2.3 · 1043 1.1 · 10−4 3.3 · 10−9 56 0.67 2.2 · 10−2 54 1.6 · 10−3

int 3.6 · 10−5 2.9 · 10−3 3.8 · 1042 7.8 · 10−7 5.3 · 10−8 0.37 2.3 · 10−2 3.8 · 10−3 0.39 2.6 · 10−2

hot 1.4 · 10−5 9.3 · 10−3 6.1 · 1043 4.5 · 10−7 1.8 · 10−7 0.15 7.3 · 10−2 6.0 · 10−2 0.22 8.7 · 10−2

LGR2 cool 0.55 27 2.8 · 1046 1.8 · 10−2 1.5 · 10−3 1.2 4.2 · 10−2 5.7 · 10−3 1.9 0.15

int 2.6 · 10−2 3.6 8.9 · 1045 9.7 · 10−4 1.9 · 10−4 5.4 · 10−2 5.7 · 10−3 1.8 · 10−3 9.7 · 10−2 1.9 · 10−2

hot 5.4 · 10−2 48 6.7 · 1047 3.2 · 10−3 1.8 · 10−3 0.11 7.6 · 10−2 0.14 0.33 0.18

LGR4 cool 0.46 14 8.4 · 1045 1.2 · 10−2 2.1 · 10−4 5.1 0.12 9.0 · 10−3 6.3 0.11

int 1.0 · 10−2 1.2 2.5 · 1045 3.0 · 10−4 3.7 · 10−5 0.11 1.0 · 10−2 2.7 · 10−3 0.16 2.0 · 10−2

hot 1.5 · 10−2 10 1.0 · 1047 6.5 · 10−4 2.8 · 10−4 0.17 8.4 · 10−2 0.11 0.34 0.15

LGR8 cool 4.0 · 10−2 0.85 3.6 · 1044 8.6 · 10−4 7.8 · 10−6 13 0.20 1.1 · 10−2 13 0.12

int 7.3 · 10−4 7.2 · 10−2 1.3 · 1044 1.7 · 10−5 1.4 · 10−6 0.23 1.7 · 10−2 4.0 · 10−3 0.26 2.2 · 10−2

hot 8.8 · 10−4 0.43 3.3 · 1045 2.7 · 10−5 8.5 · 10−6 0.28 0.10 9.9 · 10−2 0.41 0.13

Note— Columns (3)-(7) are time averaged outflow fluxes defined by Equation 10 for (3) mass flux in M�/(kpc2 yr) (Equation 11), (4) mo-
mentum flux in (M� km s−1)/(kpc2 yr) (Equation 12), (5) energy flux in erg/(kpc2 yr) (Equation 13), (6) total metal flux in M�/(kpc2 yr)
(Equation 14), and (7) SN-origin metal flux in M�/(kpc2 yr) (Equation 25). Columns (8)-(12) are time averaged loading factors (dimension-
less) defined by Equation 27 and Equation 15 with (8) Equation 16 for mass, (9) Equation 17 for momentum, (10) Equation 18 for energy,
and Equation 19 for (11) total metal and (12) SN-origin metal. Time averages are taken over 0.5 torb < t < 1.5 torb. The data for additional
tables at different heights (|z| = 2H, 500 pc, and 1 kpc) as well as standard deviations are available at doi:10.5281/zenodo.3872049.

from a single SN, especially when SN events are nearly continuous and blast waves become subsonic in the hot ISM

before reaching the cool shell (Kim et al. 2017a; El-Badry et al. 2019). Also, a portion of the injected SNe momentum

flux is converted to magnetic stresses, and near the midplane these are comparable to the vertical kinetic momentum

flux. The momentum flux also decreases as function of z, especially for the cool component, since it must contribute

support against the weight of the ISM (the thermal plus turbulent pressure is approximately twice Fp, allowing for

vout < 0). At |z| = H and above, the leftover kinetic vertical momentum flux is only 10% of the reference momentum

flux. This is generally true except in R16, in which fluxes are all dominated by the cool component, and SN events

are more or less discrete.

In Table 3, we provide the mean values over 0.5 < t/torb < 1.5 of the measured fluxes and loading factors of all

models and phases at |z| = H.

4.4. Characteristic Velocities and Metal Properties

Figure 7 plots time-averaged vertical profiles of additional quantities of interest, including (a) outflow velocity, (b)

Bernoulli velocity, (c) metallicity, and (d) metal enrichment factor for model R4. The characteristic outflow velocity

is defined as

vout,ph(z; t) ≡
Fkin

p,ph(z; t)

FM,ph(z; t)
, (28)

http://doi.org/10.5281/zenodo.3872049
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where Fkin

p,ph is the kinetic component of momentum flux defined by only the first term of Equation 12. The Bernoulli

velocity is defined by

vB,ph(z; t) ≡
(

2FE,ph(z; t)

FM,ph(z; t)

)1/2

, (29)

including both the kinetic and thermal term in Equation 13. For an adiabatic steady flow, the Bernoulli velocity at

z must exceed the escape speed vesc ≡ [2(Φ(zmax) − Φ(z))]1/2 in order for the flow to reach zmax; this criterion also

applies for a completely cold ballistic flow, where vB → v.

The outflow velocity of cool outflows is as low as ∼ 30 km s−1 near the midplane and increases as the outflow moves

farther away, reaching as high as ∼ 100 km s−1 near the simulation boundaries. The increasing trend of the outflow

velocity of the cool phase with |z| seen in Figure 7(a) is often interpreted as an acceleration, but the mean outflow

velocity can also increase as low velocity gas drops out. The former is more important near the midplane |z| < H

where actual acceleration of the cool phase by superbubble expansion is occurring, but the latter dominates the trend

at higher altitudes (e.g., KO18, Vijayan et al. 2020). Indeed, panel (b) of Figure 6 shows a trend of steadily decreasing

momentum flux with |z|, due to the dropout of low-velocity gas. In the extraplanar region |z| > H, some acceleration

of cool outflows occurs due to the hot-cool interaction, which helps to maintain high velocity tails of cool outflows

(Vijayan et al. 2020), but this is not the dominant reason for the increasing trend of outflow velocity. We also note

that cooling of intermediate-temperature gas is preferentially at low velocity and adds to the cool gas inflow; cooling

of intermediate-temperature gas has minimal impact on the momentum transfer to the cool phase (see Vijayan et al.

2020).

For model R4, the escape velocity from the box relative to |z| = H = 340 pc (where we tabulate vB) is

vesc = 154 km s−1. Given the low mean outflow velocity of cool outflows, it is evident that the majority of cool

(and intermediate) phase outflows cannot travel far from the disk midplane and escape the simulation domain. This

is also clearly demonstrated by the steep decrease of mass loading factor as a function of z in Figure 6(a).

The outflow velocity of hot outflows, in contrast, is higher than the escape velocity of the system, as clearly illustrated

in Figure 3. The Bernoulli velocity is much larger than the outflow velocity as the thermal term dominates, implying

the possibility of further acceleration of hot outflows. In our simulations, the outflow velocity for the hot gas flattens

out above |z| > H or 2H, reaching vout,hot ∼ 250 km s−1 for model R4. This flattening is mainly due to the limited

volume of the local box simulations. When a volume much larger than the source region is available, hot outflows

expand and increase outflow velocity at the expense of thermal energy (e.g., Chevalier & Clegg 1985). In order for a

hot flow to fully accelerate, the simulation box must be large compared to the source region, so that the streamlines

can open and transition through a sonic point before reaching the boundaries (e.g. Fielding et al. 2017; Schneider &

Robertson 2018; Schneider et al. 2020), which generally does not occur when there is distributed star formation in a

local box (e.g., Martizzi et al. 2016).

Since the asymptotic velocity is v = (v2
B − v2

esc)1/2 for an adiabatic wind, the Bernoulli velocity can be used as

a proxy for the terminal velocity that the hot gas would reach in the case that vB � vesc. In Figure 7(b), the

Bernoulli velocity of hot outflow decreases with |z|, from vB,hot(H) ∼ 820 km s−1 to vB,hot(2H) ∼ 660 km s−1 to

vB,hot(Lz/2) ∼ 490 km s−1, while the escape velocity decreases from vesc(H) = 154 km s−1 to vesc(2H) = 137 km s−1.

Since only the combination v2
B− v2

esc is expected to be conserved in an adiabatic flow, the decrease of vB with distance

owes in part to the decrease of vesc with distance, although this effect is small when vB � vesc. Within the main

body of the disk (|z| < H or 2H), a decrease in vB is also expected since the strong interaction between hot and

cool components transfers energy from hot to cooler gas. After the hot gas emerges into the extraplanar region, the

interaction between phases is reduced, but there is still substantial loss of energy flux from the hot component due to

interaction with cool fountain flows populated by previous events (Vijayan et al. 2020). Even with these losses, the

Bernoulli velocity of the hot outflow in all models is large enough (> 600 km s−1 at |z| = 2H) that the hot gas could

be expected to travel far out to the CGM.

Figure 7(c) plots the mean metallicity of outflows. As shown in Figure 5(a), the metallicity of outflows (and the ISM)

gradually increases over time. SNe inject metals mainly near the midplane. As hot, metal-enriched bubbles expand

and mix into surrounding cooler gas, the metallicity of hotter/cooler component decreases/increases as outflows travel

farther. The mean metallicity in each phase significantly changes as a function of z up to |z| = 2H, again indicating

active interaction and mixing between phases within |z| < 2H. For |z| ∈ (H, 2H), the hot and cool outflows are

respectively ∼ 50% and 10–20% more metal enriched than the ISM near the midplane (Figure 7(d)).
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Table 4. Time averaged velocities and metal properties at |z| = H

Model phase vout vB Z ζ fSN
M fSN

Z

(1) (2) (3) (4) (5) (6) (7) (8)

R2 cool 69 1.0 · 102 3.9 · 10−2 1.1 2.6 · 10−2 0.14

int 1.4 · 102 2.1 · 102 4.2 · 10−2 1.2 4.4 · 10−2 0.21

hot 5.8 · 102 1.4 · 103 7.2 · 10−2 2.1 0.23 0.63

R4 cool 47 67 3.2 · 10−2 1.1 1.1 · 10−2 6.9 · 10−2

int 1.1 · 102 1.6 · 102 3.4 · 10−2 1.1 2.3 · 10−2 0.13

hot 3.8 · 102 8.2 · 102 4.6 · 10−2 1.6 9.6 · 10−2 0.40

R8 cool 20 37 2.2 · 10−2 1.0 3.5 · 10−3 3.2 · 10−2

int 69 1.3 · 102 2.4 · 10−2 1.1 1.2 · 10−2 0.10

hot 2.4 · 102 6.0 · 102 3.1 · 10−2 1.4 5.4 · 10−2 0.34

R16 cool 7.9 20 2.0 · 10−2 1.0 9.3 · 10−6 1.0 · 10−4

int 36 96 2.2 · 10−2 1.1 6.3 · 10−3 7.1 · 10−2

hot 1.3 · 102 5.4 · 102 3.2 · 10−2 1.6 5.0 · 10−2 0.36

LGR2 cool 44 69 3.5 · 10−2 1.1 1.5 · 10−2 8.5 · 10−2

int 1.1 · 102 1.8 · 102 3.8 · 10−2 1.2 3.6 · 10−2 0.19

hot 4.2 · 102 1.0 · 103 5.7 · 10−2 1.8 0.15 0.51

LGR4 cool 29 45 2.8 · 10−2 1.0 4.5 · 10−3 3.2 · 10−2

int 92 1.5 · 102 3.0 · 10−2 1.1 1.8 · 10−2 0.12

hot 3.1 · 102 7.4 · 102 4.1 · 10−2 1.5 8.0 · 10−2 0.38

LGR8 cool 13 26 2.2 · 10−2 1.0 1.4 · 10−3 1.3 · 10−2

int 50 1.2 · 102 2.4 · 10−2 1.1 1.4 · 10−2 0.11

hot 1.6 · 102 4.6 · 102 3.0 · 10−2 1.4 3.9 · 10−2 0.29

Note— Column (3): characteristic outflow velocity in km s−1 (Equation 4). Col-
umn (4): Bernoulli velocity in km s−1 (Equation 29). Column (5): outflow
metallicity (Equation 23). Column (6): metal enrichment factor (Equation 26).
Column (7): mass fraction of SN-origin materials in outflows (Equation 24). Col-
umn (8): metal mass fraction of SN-origin materials in outflows (Equation 25).
Time averages are taken over 0.5 torb < t < 1.5 torb. The data for additional
tables at different heights (|z| = 2H, 500 pc, and 1 kpc) as well as standard
deviations are available at doi:10.5281/zenodo.3872049.

In Table 4, we provide the mean values of the mass weighted outflow velocity, Bernoulli velocity, mean metallicity,

and enrichment factors of all models and phases at |z| = H, averaged over 0.5 < t/torb < 1.5.

5. SCALING RELATIONS

In this section, we systematically investigate the dependence of outflow characteristics (loading factors, metal prop-

erties, and outflow velocities) on a variety of galactic properties in our simulations, including SFR surface density

(ΣSFR), gas surface density (Σgas), midplane gas number density (nmid), midplane total pressure (Pmid), gas weight

(W), and gas depletion time (tdep). At any time, ΣSFR is calculated from the total mass of star cluster particles with

age younger than τbin such that

ΣSFR,τbin ≡
Msp(tage < τbin)

τbinLxLy
. (30)

As a default, we use τbin = tevol = 40 Myr, corresponding to the SFR definition that best traces the SN rates used

in the reference flux calculations, but we also explored different τbin = 10 Myr and 100 Myr. Σgas = Mgas/(LxLy) is

directly calculated from the total gas mass divided by horizontal area. Midplane averages are computed by taking

averages in two horizontal slices at z = ±∆x/2, with nmid and Pmid defined using volume averaged number density

and total pressure (including turbulent, thermal, and magnetic terms) just for cool gas. W is obtained by directly

integrating ρdΦ/dz for cool gas from the top or bottom of the simulation domain to the midplane and averaging

the two values. The depletion time tdep = Σgas/ΣSFR,τbin for τbin = 40 Myr. Here, we will present dependencies

http://doi.org/10.5281/zenodo.3872049
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Figure 7. Vertical profiles of characteristic velocities and metal properties in model R4. Figures for other models are available at
https://changgoo.github.io/tigress-wind-figureset/figureset.html. Rows show (a) outflow velocity (Equation 28), (b) Bernoulli
velocity (Equation 29), (c) outflow metallicity (Equation 23), and (d) metal enrichment factor (Equation 26). Lines and symbols
have the same meaning as in Figure 6. The hot wind has both larger characteristic velocities and larger metal enrichment than
the cool and intermediate-temperature outflows.

on galactic properties as scaling relations for cool and hot phase loading factors, characteristic velocities, and metal

enrichment measured at |z| = H. We also have fit scaling relations at different heights, and these results are available at

doi:10.5281/zenodo.3872049 (see Jupyter notebook). We generally find smaller intrinsic scatter and better correlation

at |z| = H and 2H than at fixed heights |z| = 500 pc and 1 kpc. Because the intermediate phase is subdominant, we

do not include these results in this section, but the data is available at doi:10.5281/zenodo.3872049.

To quantify scaling relations between two variables, we report linear regression results in log-log space. We first

construct time series of quantities of interest with 0.01torb interval over 0.5 < t/torb < 1.5 for each model. We then

perform bootstrap resampling 500 times with a sample size of 10 (we find typical auto-correlation time scales of time

series tcorr/torb ∈ (0.05, 0.1)) to obtain mean (q̃) and its error (δq̃). We feed in log of the mean (log q̃) and error

δq̃/(q̃ ln 10) for linear regression using a python version of the linmix package.9 This is a widely tested Bayesian

estimator for linear regression (Kelly 2007) to derive posterior distributions of intercept α and slope β as well as

intrinsic scatter σint and Pearson correlation coefficient ρ.

9 https://github.com/jmeyers314/linmix

https://changgoo.github.io/tigress-wind-figureset/figureset.html
http://doi.org/10.5281/zenodo.3872049
https://github.com/changgoo/tigress-wind-figureset/blob/paper1/tables/Example_scripts.ipynb
http://doi.org/10.5281/zenodo.3872049
https://github.com/jmeyers314/linmix
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Table 5. Fitting results for cool and hot phases at |z| = H

cool hot

X Y α β Cov(α, β) σint ρ α β Cov(α, β) σint ρ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

ΣSFR,40 ηM −0.07+0.16
−0.15 −0.44+0.08

−0.08 0.019 0.20+0.19
−0.11 −0.98+0.08

−0.02 −0.86+0.14
−0.11 −0.07+0.08

−0.06 0.019 0.17+0.16
−0.09 −0.64+0.71

−0.31

ηp −1.43+0.14
−0.14 −0.29+0.07

−0.07 0.033 0.18+0.17
−0.09 −0.96+0.14

−0.03 −1.01+0.10
−0.10 0.02+0.06

−0.06 0.009 0.12+0.13
−0.07 0.25+0.59

−0.86

ηE −2.23+0.13
−0.13 −0.12+0.06

−0.06 0.013 0.15+0.15
−0.08 −0.86+0.40

−0.12 −0.70+0.12
−0.14 0.14+0.08

−0.08 0.012 0.16+0.16
−0.09 0.87+0.11

−0.44

ηSN
Z −0.85+0.17

−0.17 −0.02+0.12
−0.11 0.112 0.20+0.26

−0.11 −0.16+0.77
−0.64 −0.61+0.11

−0.12 0.11+0.07
−0.07 0.010 0.14+0.14

−0.07 0.87+0.12
−0.46

vout 1.78+0.07
−0.07 0.23+0.04

−0.04 0.004 0.11+0.09
−0.05 0.97+0.02

−0.08 2.72+0.05
−0.06 0.16+0.03

−0.03 0.002 0.07+0.07
−0.03 0.98+0.02

−0.08

vB 1.92+0.07
−0.07 0.17+0.03

−0.03 0.004 0.10+0.08
−0.04 0.95+0.03

−0.11 3.04+0.08
−0.08 0.11+0.04

−0.04 0.005 0.12+0.09
−0.05 0.86+0.10

−0.29

ζ 0.04+0.01
−0.01 0.01+0.00

−0.00 0.000 0.01+0.01
−0.01 0.87+0.10

−0.30 0.25+0.05
−0.05 0.03+0.02

−0.03 0.002 0.08+0.06
−0.03 0.64+0.26

−0.53

Σgas ηM 2.17+0.36
−0.34 −1.16+0.24

−0.25 −0.168 0.27+0.23
−0.13 −0.96+0.13

−0.03 −0.47+0.26
−0.31 −0.20+0.21

−0.18 −0.086 0.16+0.16
−0.09 −0.67+0.69

−0.28

ηp 0.04+0.28
−0.28 −0.76+0.20

−0.19 −0.266 0.19+0.18
−0.10 −0.95+0.16

−0.04 −1.06+0.24
−0.26 0.02+0.17

−0.16 −0.062 0.12+0.13
−0.07 0.11+0.68

−0.81

ηE −1.62+0.26
−0.25 −0.32+0.18

−0.18 −0.075 0.16+0.16
−0.08 −0.85+0.41

−0.12 −1.36+0.33
−0.33 0.34+0.22

−0.22 −0.101 0.18+0.16
−0.09 0.81+0.16

−0.49

ηSN
Z −0.71+0.48

−0.50 −0.07+0.32
−0.31 −0.441 0.19+0.25

−0.11 −0.21+0.78
−0.60 −1.15+0.29

−0.29 0.27+0.19
−0.19 −0.085 0.16+0.14

−0.08 0.81+0.16
−0.52

vout 0.65+0.21
−0.21 0.59+0.15

−0.15 −0.070 0.18+0.13
−0.06 0.93+0.05

−0.17 1.92+0.15
−0.15 0.41+0.10

−0.10 −0.026 0.11+0.09
−0.04 0.94+0.05

−0.16

vB 1.09+0.17
−0.17 0.43+0.12

−0.12 −0.037 0.15+0.10
−0.05 0.91+0.07

−0.19 2.52+0.18
−0.17 0.27+0.12

−0.12 −0.035 0.14+0.11
−0.05 0.81+0.14

−0.34

ζ −0.02+0.02
−0.02 0.03+0.01

−0.01 −0.000 0.02+0.01
−0.01 0.83+0.13

−0.34 0.10+0.10
−0.09 0.08+0.07

−0.07 −0.013 0.08+0.06
−0.03 0.60+0.28

−0.54

nmid ηM 0.95+0.11
−0.10 −0.75+0.11

−0.11 −0.010 0.16+0.17
−0.09 −0.99+0.06

−0.01 −0.69+0.11
−0.12 −0.12+0.14

−0.11 −0.025 0.17+0.18
−0.09 −0.64+0.70

−0.30

ηp −0.76+0.10
−0.10 −0.49+0.11

−0.11 −0.008 0.14+0.15
−0.08 −0.98+0.10

−0.02 −1.04+0.10
−0.11 0.02+0.11

−0.11 −0.010 0.13+0.14
−0.07 0.17+0.65

−0.81

ηE −1.96+0.10
−0.10 −0.20+0.11

−0.11 −0.008 0.15+0.14
−0.08 −0.87+0.38

−0.11 −1.01+0.12
−0.12 0.23+0.13

−0.13 −0.015 0.16+0.15
−0.08 0.87+0.11

−0.42

ηSN
Z −0.80+0.17

−0.19 −0.03+0.21
−0.19 −0.178 0.18+0.24

−0.10 −0.14+0.77
−0.67 −0.88+0.11

−0.11 0.19+0.11
−0.12 −0.011 0.13+0.14

−0.07 0.87+0.11
−0.44

vout 1.27+0.06
−0.06 0.38+0.07

−0.07 −0.004 0.12+0.10
−0.05 0.97+0.03

−0.10 2.35+0.04
−0.04 0.28+0.05

−0.05 −0.002 0.06+0.07
−0.03 0.98+0.01

−0.07

vB 1.55+0.05
−0.05 0.28+0.06

−0.05 −0.002 0.10+0.08
−0.04 0.96+0.03

−0.11 2.80+0.06
−0.06 0.18+0.06

−0.07 −0.003 0.12+0.09
−0.05 0.88+0.09

−0.28

ζ 0.01+0.01
−0.01 0.02+0.01

−0.01 −0.000 0.01+0.01
−0.01 0.89+0.09

−0.26 0.18+0.04
−0.03 0.05+0.04

−0.04 −0.001 0.07+0.05
−0.03 0.66+0.25

−0.51

Pmid/kB ηM 3.16+0.40
−0.41 −0.51+0.08

−0.08 −0.059 0.18+0.17
−0.09 −0.98+0.07

−0.01 −0.35+0.41
−0.45 −0.08+0.09

−0.07 −0.059 0.16+0.16
−0.09 −0.66+0.70

−0.29

ηp 0.69+0.39
−0.39 −0.34+0.08

−0.08 −0.051 0.16+0.16
−0.09 −0.97+0.12

−0.03 −1.11+0.36
−0.38 0.02+0.07

−0.07 −0.038 0.12+0.12
−0.07 0.21+0.61

−0.82

ηE −1.39+0.37
−0.38 −0.13+0.07

−0.07 −0.046 0.15+0.14
−0.08 −0.85+0.41

−0.12 −1.68+0.47
−0.44 0.16+0.08

−0.09 −0.061 0.15+0.15
−0.08 0.87+0.11

−0.41

ηSN
Z −0.75+0.69

−0.71 −0.02+0.13
−0.13 −1.878 0.19+0.25

−0.11 −0.11+0.74
−0.67 −1.47+0.41

−0.38 0.14+0.07
−0.08 −0.046 0.13+0.13

−0.07 0.88+0.11
−0.42

vout 0.14+0.15
−0.17 0.26+0.03

−0.03 −0.008 0.07+0.06
−0.04 0.99+0.01

−0.04 1.54+0.14
−0.14 0.19+0.03

−0.03 −0.006 0.05+0.05
−0.03 0.99+0.01

−0.05

vB 0.71+0.14
−0.15 0.19+0.03

−0.03 −0.008 0.08+0.06
−0.03 0.98+0.02

−0.07 2.26+0.22
−0.20 0.12+0.04

−0.04 −0.015 0.11+0.08
−0.04 0.90+0.08

−0.25

ζ −0.04+0.02
−0.02 0.01+0.00

−0.00 −0.000 0.01+0.01
−0.01 0.90+0.08

−0.24 0.01+0.15
−0.14 0.04+0.03

−0.03 −0.009 0.07+0.05
−0.03 0.67+0.24

−0.49

W/kB ηM 3.23+0.39
−0.42 −0.54+0.08

−0.08 −0.064 0.17+0.16
−0.09 −0.99+0.06

−0.01 −0.31+0.40
−0.48 −0.09+0.09

−0.08 −0.064 0.17+0.16
−0.09 −0.66+0.69

−0.29

ηp 0.73+0.38
−0.38 −0.35+0.07

−0.08 −0.064 0.16+0.16
−0.08 −0.97+0.12

−0.03 −1.12+0.39
−0.40 0.02+0.08

−0.07 −0.048 0.12+0.13
−0.07 0.24+0.60

−0.88

ηE −1.35+0.40
−0.39 −0.14+0.08

−0.08 −0.050 0.16+0.15
−0.08 −0.84+0.40

−0.13 −1.73+0.49
−0.47 0.17+0.09

−0.09 −0.208 0.15+0.15
−0.08 0.88+0.10

−0.41

ηSN
Z −0.74+0.70

−0.73 −0.02+0.14
−0.13 −0.435 0.19+0.24

−0.11 −0.11+0.76
−0.66 −1.46+0.42

−0.41 0.14+0.08
−0.08 −0.048 0.13+0.13

−0.07 0.88+0.10
−0.42

vout 0.10+0.17
−0.17 0.27+0.03

−0.03 −0.013 0.08+0.06
−0.03 0.99+0.01

−0.04 1.52+0.14
−0.15 0.19+0.03

−0.03 −0.007 0.06+0.06
−0.03 0.99+0.01

−0.05

vB 0.68+0.15
−0.15 0.20+0.03

−0.03 −0.010 0.08+0.06
−0.03 0.97+0.02

−0.07 2.25+0.23
−0.21 0.13+0.04

−0.05 −0.017 0.11+0.08
−0.04 0.89+0.08

−0.26

ζ −0.04+0.02
−0.02 0.01+0.00

−0.00 −0.000 0.01+0.01
−0.01 0.90+0.08

−0.24 0.01+0.15
−0.13 0.04+0.03

−0.03 −0.008 0.07+0.05
−0.03 0.66+0.24

−0.50

tdep,40 ηM −1.44+0.32
−0.29 0.70+0.09

−0.10 −0.085 0.16+0.17
−0.09 0.99+0.01

−0.06 −1.01+0.34
−0.31 0.09+0.11

−0.12 −0.069 0.19+0.17
−0.09 0.51+0.38

−0.68

ηp −2.32+0.33
−0.32 0.45+0.10

−0.10 −0.098 0.17+0.18
−0.09 0.96+0.03

−0.14 −0.95+0.26
−0.25 −0.03+0.09

−0.09 −0.040 0.12+0.13
−0.06 −0.30+0.81

−0.55

ηE −2.61+0.29
−0.29 0.19+0.09

−0.09 −0.048 0.15+0.14
−0.08 0.86+0.11

−0.39 −0.27+0.30
−0.32 −0.22+0.11

−0.10 −0.059 0.14+0.15
−0.07 −0.89+0.37

−0.10

ηSN
Z −0.87+0.48

−0.47 0.02+0.17
−0.18 −0.550 0.19+0.24

−0.11 0.11+0.68
−0.76 −0.25+0.26

−0.27 −0.18+0.10
−0.09 −0.037 0.12+0.13

−0.07 −0.90+0.37
−0.09

vout 2.46+0.11
−0.11 −0.34+0.03

−0.04 −0.006 0.06+0.05
−0.03 −0.99+0.03

−0.01 3.22+0.09
−0.10 −0.25+0.03

−0.03 −0.005 0.04+0.05
−0.02 −0.99+0.04

−0.01

vB 2.44+0.11
−0.11 −0.26+0.03

−0.03 −0.007 0.07+0.05
−0.03 −0.98+0.06

−0.01 3.37+0.16
−0.18 −0.17+0.06

−0.05 −0.017 0.11+0.08
−0.04 −0.89+0.25

−0.09

ζ 0.07+0.02
−0.02 −0.02+0.01

−0.01 −0.000 0.01+0.01
−0.01 −0.91+0.23

−0.07 0.36+0.11
−0.12 −0.05+0.04

−0.04 −0.008 0.07+0.06
−0.03 −0.66+0.50

−0.24

Note—The data at different heights along with python scripts for fitting are available at doi:10.5281/zenodo.3872049. Linear regression results for
logX and log Y . We exclude R16 for fitting of ηSN

Z,cool. The values given for the intercept α, slope β, intrinsic scatter σint, and Pearson correlation

coefficient ρ are the median and interval containing 68% of the estimates over the posterior distributions. Covariance of α and β is given in Columns
(5) and (10).

http://doi.org/10.5281/zenodo.3872049
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5.1. Loading Factors with SFRs

Figure 8 shows scaling relations of mass, momentum, energy, and SN-origin metal loading factors measured at H as

a function of ΣSFR for cool (left) and hot (right) outflows. We present the mean and error of measured quantities from

bootstrapping as symbols and errorbars, which we use for the fitting, along with small points denoting time evolution

of each model over 0.5 < t/torb < 1.5 with sampling interval of 0.01torb. In each panel, the solid line and shaded

regions denote the median and 68% and 95% confidence intervals of model posterior distributions; the median and

16th/84th percentile values of the intercept α, slope β, intrinsic scatter σint, and Pearson correlation coefficient ρ are

shown in the box of each panel (also shown in Table 5).

The hot mass loading factors are nearly flat with ηM,hot ∼ 0.1− 0.2 over a wide range in ΣSFR. This level of the hot

gas loading is consistent with what has been reported in other simulations (e.g., Li et al. 2017; Li & Bryan 2020) and

with the expectation from superbubble breakout after shell formation (Kim et al. 2017a). The hot gas energy loading

factors ηE,hot show a weakly increasing trend from 0.06-0.25 with ΣSFR, and is larger than ηE,cool by more than an

order of magnitude. In general, the models with higher SFR have greater temporal and spatial correlation of star

formation (and SNe), providing a potential explanation for the enhancement of energy loading factor. However, the

effect is less dramatic than suggested by previous idealized numerical simulations (Fielding et al. 2018). This is partly

because we are reporting time-averaged loading factors (averaging over both high and low states) and partly because

our self-consistent simulations always have fountain flow gas at high altitudes, with which hot gas must interact. In

addition, the larger horizontal velocity dispersions at higher SFR tend to close off chimneys. Thus, even though there

is a burst of star formation that creates a superbubble, the energy loading is reduced below what it would be if the

superbubble were to vent into an almost-vacuum region.

The cool mass loading factors ηM,cool decrease steeply with ΣSFR, with values ranging from 100 to 1. However, it is

noteworthy that much of the cool gas is at low velocities (vout,cool ∼ 10 − 100 km s−1; see Table 4), as evidenced by

the low energy loading factor (see also KO18). Therefore, the high mass loading factor of the cool phase at |z| = H

shown here does not immediately imply heavily mass-loaded winds at large distances. Indeed, the mass loading factor

in model R4 drops by a factor of 3 from |z| = H to |z| = 2H, and keep decreasing as a function of |z| (see Figure 6

and also KO18). In our simulation suite, most of the mass in cool outflows cannot reach the vertical boundary of

the simulation box, and falls back toward the midplane (see Figure 3). It is still possible to anticipate a higher mass

loading factor at large distances (e.g., 0.1-1 virial radius) in dwarf galaxies that have a shallower global gravitational

potential, as reported in cosmological zoom-in (Martizzi et al. 2015) or isolated galaxy simulations (Hu 2019). We

refrain from extrapolating our results to that regime since those outflows may consist of both directly launched cool

outflows, and swept-up CGM driven out by energy delivered by hot outflows.

The momentum loading factors in the cool gas at |z| = H decrease from ηp,cool ∼ 0.7 to 0.04 with increasing ΣSFR.

When combined with the nearly constant ηp,hot ∼ 0.1 and decreasing trend of ηp as a function of z in general (see

Figure 6), this implies that most of the vertical momentum injection from SN feedback goes into the bulk of the ISM

in the disk, rather than escaping from galaxies. Further analysis of the momentum injection to the ISM from SN
feedback, quantifying its contribution to supporting the gravitational weight of the disk and regulating SFRs, will be

given in a separate paper (Ostriker & Kim in prep.; see also Kim et al. 2011, 2013; Kim & Ostriker 2015b). Consistent

with our previous result in KO18 (see also Li & Bryan 2020), we find that the energy loading factor of the cool gas is

significantly lower than in the hot gas, ηE,cool ∼ 0.02− 0.005, decreasing with increasing ΣSFR.

A key conclusion from our simulation suite is that energy is carried by hot outflows while mass is carried by cool

outflows. Including two distinct wind components is therefore crucial in any physically-motivated wind model.

5.2. Dependence of Loading Factors on Galactic Properties

Figure 9 and Figure 10 show ηM,cool and ηE,hot as a function of different galactic conditions, including ΣSFR with

different τbin, Σgas, nmid, Pmid, W, and tdep with τbin = 40 Myr. These parameters are chosen both because they

represent important physical properties of the ISM, and because we expect outflows to correlate with them. These

parameters are also quantities that can be estimated in large volume cosmological simulations or semi-analytic models,

and therefore would be available as inputs to a subgrid model for wind launching. The level of ΣSFR (which is not

imposed, but obtained self-consistently in each simulation) sets the overall strength of feedback, while Σgas and nmid

characterize the conditions that affect superbubble propagation and breakout as well as transfer of momentum and

energy to the bulk ISM. The values of Pmid and W are related to each other and to ΣSFR through self-regulation.
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Figure 8. Scalings of loading factors with SFR surface density at |z| = H. Figures at different heights are available at
https://changgoo.github.io/tigress-wind-figureset/figureset.html. The mass, kinetic z-momentum, energy, and SN-origin metal
loading factors are shown from top to bottom. We exclude R16 for fitting of ηSN

Z,cool. Left and right columns are for cool and hot
outflows, respectively. Symbols with errorbars denote mean and standard deviation over 0.5 < t/torb < 1.5, while corresponding
colored points represent full time evolution sampled with an interval of 0.01torb. The results of linear regression using linmix

are shown as black solid lines (median) and grey bands (68% and 95% confidence intervals). For each panel the key gives the
values of the median and interval containing 68% of the estimates for the intercept (α), slope (β), intrinsic scatter (σint), and
Pearson correlation coefficient (ρ). While all of the loading factors for the hot wind are nearly independent of ΣSFR, the mass
loading of the cool outflow decreases at larger ΣSFR.

https://changgoo.github.io/tigress-wind-figureset/figureset.html
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Figure 9. Scaling relations of cool mass loading factor ηM,cool with galactic properties. The mass flux is measured at |z| = H.
Figures at different heights are available at https://changgoo.github.io/tigress-wind-figureset/figureset.html. The abscissas are
(a)-(c) SFR surface density with τbin = 10 Myr, 40 Myr, and 100 Myr, (d) gas surface density, (e) midplane gas volume density,
(f) midplane total pressure, (g) total gas weight, and (h) gas depletion time. The simulation results and fitting results are
presented as in Figure 8.

Figure 10. Scaling relations of hot energy loading factor ηE,hot with galactic properties. The energy flux is measured at
|z| = H. Figures at different heights are available at https://changgoo.github.io/tigress-wind-figureset/figureset.html. The
abscissas are (a)-(c) SFR surface density with τbin = 10 Myr, 40 Myr, and 100 Myr, (d) gas surface density, (e) midplane gas
volume density, (f) midplane total pressure, (g) total gas weight, and (h) gas depletion time. The simulation results and fitting
results are presented as in Figure 8.

https://changgoo.github.io/tigress-wind-figureset/figureset.html
https://changgoo.github.io/tigress-wind-figureset/figureset.html


Multiphase Galactic Outflows 29

These also reflect the vertical gravitational field, and therefore encode oscillation timescales that control fountain flows

that limit gas escape. The value of tdep = Σgas/ΣSFR represents a local evolutionary timescale.

In the first three panels, (a)-(c), of Figure 9 and Figure 10, we compare scaling relations for three different choices

of the averaging timescale for ΣSFR. These values, τbin = 10, 40, and 100 Myr, are rough proxies for different

observational tracers. As expected, ΣSFR traced by younger star clusters (e.g., ΣSFR,10) exhibits larger amplitude

fluctuations. Nevertheless, the scaling relations from time-averaged points with all τbin choices are consistent with

each other.

Panels (d)-(h), of Figure 9 and Figure 10 show scaling relations of ηM,cool and ηE,hot with respect to Σgas, nmid,

Pmid, W, and tdep. Overall, we do not find particularly better correlation with one parameter over another (except

Σgas has poorer correlation). This is mainly because the quantities are not physically independent, but mutually

connected through self-regulation. Fundamentally, the SFR surface density is self-regulated to provide the vertical

pressure support through feedback that is required by the gas weight ΣSFR ∝ Pmid ≈ W (Ostriker et al. 2010; Ostriker

& Shetty 2011; Kim et al. 2011) with near-linear relationships demonstrated in both simulations (Ostriker & Kim in

prep.; see also Shetty & Ostriker 2012; Kim et al. 2013; Kim & Ostriker 2015b) and observations (Herrera-Camus

et al. 2017; Sun et al. 2020). All three of these quantities therefore are fundamental measures of the feedback strength,

while including the local vertical gravity and gas density implicitly/explicitly. The midplane pressure and the weight

are the same on average, but their instantaneous response to feedback is different; the midplane pressure responds

more immediately and directly to SN rates (∝ ΣSFR,40) and FUV luminosity (∝ ΣSFR,10), while the weight varies only

indirectly through the change of gas scale height (or velocity dispersion). The temporal variations in Pmid and W are

thus similar to those in ΣSFR with shorter and longer averages, respectively, so that the scatter in the points in panels

(f) and (g) is more or less similar to panels (a)/(b) and (c), respectively.

The scaling with Σgas (panel (d)) is related to the scaling with gas weight. If the external gravity dominates the

weight,W ≈ Σgasσz(2Gρsd)1/2, where ρsd ≡ Σ∗/(2z∗)+ρdm is the midplane density of stars and dark matter; however,

a large range of ΣSFR ∝ W is possible at a given Σgas. As a consequence, correlation with Σgas is indeed slightly

worse than other parameters considered including ΣSFR, Pmid, and W, judging from the larger intrinsic scatter and

the smaller Pearson correlation coefficient derived by linear regression. A wider parameter space survey and more

experiments with extreme combinations between gas and gravity parameters would help to uncover which properties

are the most fundamental in setting the loading factors.

The scaling with nmid (panel (e)) is a measure of cooling in the ISM (Ėcool ∼ n2Λ) and is also related to the scaling

with midplane pressure, since ρmidσ
2
z,eff = Pmid. Over more than three orders of magnitude variation in Pmid covered

by our simulation suite, the effective vertical velocity dispersion σz,eff increases by no more than a factor 3 from the

lowest to the highest ΣSFR and Pmid (see Table 2; see also Joung et al. 2009). Therefore, panels (e) and (f) are similar.

Finally, the scatter in the relation for tdep (panel (h)) in each model simply arises from the scatter in ΣSFR since

variations in Σgas are (by design) narrow for each simulation. The gas depletion time is useful since it is not specific to

geometry and can be defined either locally or globally (the area factor cancels out in the definition of tdep). Although

values of tdep in some of our simulations may be somewhat low (see Ostriker & Kim in prep. for discussions on potential

causes and missing physics), the scaling may still hold true.

5.3. Outflow Velocity, Bernoulli Velocity, and Metal Enrichment

In Figure 11, we present scaling relations for additional wind characteristics, including outflow velocity (Equation 28),

Bernoulli velocity (Equation 29), and metal enrichment factor (Equation 26) at |z| = H, as a function of ΣSFR with

τbin = 40 Myr.

Both outflow velocity and Bernoulli velocity scale weakly with ΣSFR. The power-law exponent for the vout vs. ΣSFR

relation in cool outflows is shallow ∼ 0.2− 0.25 (depending on where vout is measured). The power-law exponent for

the vB vs. ΣSFR relation in hot outflows is even shallower ∼ 0.07− 0.1 (depending on where vB is measured). These

weak scalings seem to be related to the characteristic shell velocity and specific energy of superbubble driven by SNe

at the time of break out, which are largely insensitive to galactic properties (see Section 6.3).

The hot outflow clearly shows a metal enrichment factor larger than unity, while the cool outflow is only marginally

enriched compared to the bulk of the ISM, and only for high SFR models. The metal enrichment factor for hot outflows

seems to flatten out at low SFRs, so that simple linear regression is not a good description of the behavior. Given the

limited number of models, we do not attempt to find a quantitative model from more sophisticated fitting. Instead,
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Figure 11. Scaling relations of characteristic velocities vout, vB, and metal enrichment factor ζ, with SFR surface density ΣSFR

at |z| = H. Figures at different heights are available at https://changgoo.github.io/tigress-wind-figureset/figureset.html. Top
row ((a) and (b)) is for outflow velocity (Equation 28), middle row ((c) and (d)) is for Bernoulli velocity (Equation 29), and
bottom row ((e) and (f)) is for metal enrichment factor (Equation 26). All quantities are measured at |z| = H for cool (left
column) and hot (right column) outflows separately. The dashed lines in (e) and (f) denote simple models describing flattening
behaviors of ζ at low ΣSFR as in Equation 31 and Equation 32. The simulation results and fitting results are presented as in
Figure 8. Characteristic velocities of the hot component are an order of magnitude higher than those of the cool component,
although the cool component velocities increase with ΣSFR slightly more steeply.

we provide simple models shown as the dashed lines in Figure 11(e) and (f) given by

ζcool =

{
1.12(ΣSFR/M� kpc−2 yr−1)0.05 if ΣSFR > 0.1M� kpc−2 yr−1

1.0 otherwise
(31)

and

ζhot =

{
2.1(ΣSFR/M� kpc−2 yr−1)0.15 if ΣSFR > 0.1M� kpc−2 yr−1

1.5 otherwise
. (32)

6. DISCUSSION

6.1. Comparison with other simulations

https://changgoo.github.io/tigress-wind-figureset/figureset.html
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Figure 12. Mass loading factor of total outflowing gas as a function of Σgas, in comparison to other work. For our simulations,
we show mass fluxes measured at |z| = (a) H, (b) 2H, (c) 500 pc, and (d) 1 kpc. The simulation results and fitting results for
our models are presented as in Figure 8. Scaling relations reported in C13 are shown as blue (C13-KS; Equation 35) and green
(C13-dyn; Equation 36) with fg = 0.1 (solid) and 0.5 (dashed). Note that the extent of lines represents the parameter coverage
of C13. Magenta stars denote fiducial local models from L17 and yellow stars denote local model FX of M16.

There have been a wide range of local simulations in vertically stratified disks including SN feedback (e.g., Korpi

et al. 1999; de Avillez 2000; Joung & Mac Low 2006; Joung et al. 2009; Gressel et al. 2008; Hill et al. 2012; Gent et al.

2013a,b; Walch et al. 2015; Peters et al. 2017; Girichidis et al. 2018b; Hennebelle & Iffrig 2014; Iffrig & Hennebelle 2017;

Colling et al. 2018). Notably for present purposes, quantitative analyses of SN-driven outflow properties have been

provided in some papers (e.g., de Avillez 2000; Creasey et al. 2013, 2015; Martizzi et al. 2016; Girichidis et al. 2016a;

Gatto et al. 2017; Li et al. 2017; Fielding et al. 2018; Kannan et al. 2020); including a few where cosmic rays were

part of the physics model (e.g., Simpson et al. 2016; Girichidis et al. 2016b, 2018a). Still, among these studies, only a

few have treated SN rates and positions self-consistently with explicit modeling of star formation from self-gravitating

collapse, and these have been limited to short-term evolution and considered only a particular galactic condition (e.g.,

Gatto et al. 2017; Kannan et al. 2020). The present work is the first, to our knowledge, that considers a wide parameter

space of local models with different galactic conditions, simulates star formation and feedback self-consistently at high

resolution, and follows long-term evolution. As we shall show below, there are interesting similarities and differences

between our results on wind scaling and those from other local models.

Comparison with global simulations is of great interest, since these are not subject to some of the limitations of local

models. Very recently, cosmological zoom-in simulations have begun to model the disk ISM and star formation without

ad hoc subgrid models for wind driving (e.g., Hopkins et al. 2014; Wang et al. 2015; Hopkins et al. 2018b; Marinacci

et al. 2019). Quantitative analyses of outflows have been presented, aiming at understanding cosmic baryonic cycles

(e.g., Muratov et al. 2015, 2017; Anglés-Alcázar et al. 2017; Christensen et al. 2016; Tollet et al. 2019). However, direct

comparison of our results on outflow scaling relations with those from zoom-in simulations is beyond the scope of this
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Figure 13. Mass loading factor of total outflowing gas as a function of ΣSFR, in comparison to other work. For our simulations,
mass fluxes are measured at |z| = (a) H, (b) 2H, (c) 500 pc, and (d) 1 kpc. The simulation results and fitting results for our
models are presented as in Figure 8. Scaling relations reported in C13 are shown as blue (C13-KS; Equation 37) and green
(C13-dyn; Equation 38) with fg = 0.1 (solid) and 0.5 (dashed). Note that the extent of lines represent the parameter coverage
of C13. Magenta stars denote fiducial local models from L17, yellow stars denote local model FX of M16, and cyan symbols
show results from global dwarf galaxy models of H19, E19, and S18.

work because: (1) most present scaling of loading factors to global properties, e.g., stellar/halo mass and circular

velocity; (2) outflow properties are measured far from their galactic disk origin and interactions with CGM may have

strongly altered the initial outflow properties; (3) outflow analyses mostly do not differentiate by thermal phase (but,

see Tollet et al. 2019, Pandya et al. in prep.); and (4) although the treatment of the ISM becomes more explicit,

individual SN feedback is still unresolved, necessitating the adoption either of artificially delayed cooling (Christensen

et al. 2016; Tollet et al. 2019) or momentum feedback for most SNe (Muratov et al. 2015, 2017; Anglés-Alcázar et al.

2017). In particular, while the “momentum” feedback approach at mass resolution ∼ 103 − 105M� is able to control

star formation, multiphase wind driving from SNe is not resolved.

Idealized global galaxy simulations are a good way to bridge the gap between local and cosmological zoom-in

simulations. Currently, only global simulations of dwarf galaxies employ sufficiently high resolution to resolve both

star formation and feedback equivalently to this work (e.g, Hu 2019; Emerick et al. 2019). Global simulations of more

massive galaxies typically have resolution below what is required to resolve the adiabatic stage of SNR evolution (and

therefore to follow hot gas creation), instead adopting “momentum” feedback for most SN events. This is likely why

the mass loading of hot gas is lower than that in our simulations; e.g., in the galactic center models of Armillotta et al.

(2019) that have similar conditions to our model R2 but mass resolution 2× 103M�, the hot gas mass loading factor

was < 0.1, even though for warm gas the fountain-like behavior and mass loading were similar to what we found. In

contrast, for the SPH models (MW and Sbc, with mass resolution 500M�) that have similar conditions to our model

R4, Hopkins et al. (2012) found similar mass-loading, but in high-velocity escaping rather than moderate-velocity
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Figure 14. Energy loading factor of total outflowing gas as a function of ΣSFR, in comparison to other work. For our
simulations, energy fluxes are measured at |z| = (a) H, (b) 2H, (c) 500 pc, and (d) 1 kpc. The simulation results and fitting
results for our models are presented as in Figure 8. The orange region covers the result of C15, ηE = 0.05− 0.5. Magenta stars
denote fiducial local models from L17, yellow stars denote local model FX of M16, and cyan symbols show results from global
dwarf galaxy models of H19, E19, and S18.

fountain-like warm outflows. This may have been a consequence of the particular implementation of momentum

feedback in their particle-based method, which has since been replaced (Hopkins et al. 2018a).

Although an apples-to-apples comparison with existing simulations is not immediately possible, we discuss our results

for scaling relations in comparison with work by Creasey et al. (2013, 2015, C13 and C15, respectively, hereafter),

Martizzi et al. (2016, M16 hereafter), and Li et al. (2017, L17 hereafter), in which a parameter survey is conducted

and scaling relations are presented. We also include results from Smith et al. (2018, S18, hereafter), Hu (2019, H19

hereafter), and Emerick et al. (2019, E19 hereafter). For an in-depth comparison with other simulations (including

Girichidis et al. 2016a; Gatto et al. 2017) for Solar neighborhood conditions (model R8), we refer the reader to the

discussion in KO18.

Before presenting the results of our comparisons, we begin by summarizing details of the C13, M16, and L17 local

simulations as well as high resolution global simulations of dwarfs (S18, H19, and E19).

• C13 conducted non-self-gravitating, unmagnetized local simulations of galactic disks covering a wide range of

gas surface density (2.5 < Σgas/M� pc−2 < 500) and gravitational field (parameterized by gas fraction fg as

gz ∝ f1/2
g , which varies from 0.01 to 1).10 SFRs (and hence SN rates) are prescribed and stay constant over the

duration of simulations. They adopt two relations for SFRs: (1) Kennicutt-Schmidt relation (C13-KS, hereafter)

10 By comparing the measured total weight with Eq. (23) in C13 for the hydrostatic pressure, we deduce fg =0.1-0.3 for the R models and
0.3-0.5 for the LGR models (smaller value for higher surface density).



34 Kim et al.

Figure 15. Correlation between energy loading factor and SN-origin metal loading factor at |z| = 1 kpc, with comparison to
other work. Figures at different heights are available at https://changgoo.github.io/tigress-wind-figureset/figureset.html. Left
((a) and (c)) and right ((b) and (d)) columns are for cumulative and instantaneous measures of SN-origin metal loading factor
obtained by Equation 25 with initial and instantaneous ISM metallicity, respectively. Top ((a) and (b)) and bottom ((c) and
(d)) rows are for total and hot outflows, respectively. The reference lines for ηE = ηZ (dotted) and ηE = 0.4ηZ (dashed; C15)
are also shown. The orange region covers the result of C15. The fitting results for our models are presented as in Figure 8.

(Kennicutt 1998),

ΣSFR = 2.5× 10−4M� kpc−2 yr−1

(
Σgas

M� pc−2

)1.4

, (33)

and (2) dynamical time prescription (C13-dyn, hereafter),

ΣSFR = 8.2× 10−5M� kpc−2 yr−1f−1
g

(
Σgas

M� pc−2

)2

. (34)

Note that the mean values of ΣSFR in our simulation suite are similar to those of C13-dyn rather than C13-KS,

especially at higher surface densities. SNe are placed randomly in the horizontal plane with the scale height

identical to the initial gas scale height. The simulation box is smaller (especially, shorter), Lx × Ly × Lz =

200 pc × 200 pc × 1 kpc. The fiducial cooling function depends only on density, n2Λ with constant Λ, and cuts

off at T = 104 K (some models include a T -dependent cooling function). No radiative heating is included.

https://changgoo.github.io/tigress-wind-figureset/figureset.html


Multiphase Galactic Outflows 35

• M16 ran non-self-gravitating, unmagnetized local simulations of galactic disks covering Σgas = 5, 50, and

500M� pc−2. The same scaling for SFR surface density is adopted as C13-KS, but the normalization is about a

factor of two lower. They have two different SN seeding schemes, but we only compare with their FX models, in

which SNe are randomly seeded in space and time within the initial disk scale height. Without a self-consistent

treatment of star formation to determine realistic clustering of star formation and hence SNe, their SC models,

in which SNe are preferentially seeded near density peaks, results in artificially enhanced cooling of SNe (see

also Girichidis et al. 2016a). At their typical resolution of a few pc, in their SC models SNe are mostly realized

via momentum injection following the prescription of Martizzi et al. (2015), which substantially changes outflow

properties (energy loading factor and multiphase structure most significantly). A cubical box with L = 1 kpc

is adopted. The cooling function depends on temperature, but cuts off at T = 104 K. No radiative heating is

included.

• L17 performed non-self-gravitating, unmagnetized local simulations covering 1 < Σgas/M� pc−2 < 150. SN

rates and distributions are essentially the same as in C13, but additional exploration with independently varying

SN scale heights was conducted. The adopted ΣSFR were a bit higher than C13-KS, closer to C13-dyn and our

mean ΣSFR (but lower at higher surface densities and higher at lower surface densities). The cooling function

depends on temperature and extends to T ∼ 300 K (Rosen et al. 1993), and a constant photoelectric heating

rate is adopted (the effect of the photoelectric heating is explored). The horizontal extent of the simulation box

is about 1/3 of ours, but larger (scales with gas surface density) than that of C13.11

• S18, H19, and E19: the high-resolution global dwarf simulations with which we compare have very low

mass (S18: Mvir = 1010M� and Mgas = 1.8 × 108M�; H19: Mvir = 1010M� and Mgas = 107M�; and E19:

Mvir = 2.5 × 109M� and Mgas = 1.8 × 106M�). Unlike C13, M16, and L17, all of these simulations have

self-consistent star formation and feedback. We note as a caveat in comparison with our results that Σgas and

ΣSFR can vary substantially within a global simulation, and even if one adopts a single value it will depend on

the area. Here, we use the scale radius to define the area, but certainly outflows can emerge from locations

beyond a scale radius. In the future, more direct comparison with homogeneous definitions would be desirable.

How and where outflow properties are measured matters a great deal, especially for mass loading (see Figure 6).

C13 and C15 reported mass, energy, and metal loading factors of the total outflowing gas (without phase separation)

by measuring the mean ejected mass, energy, and metals through the vertical boundaries |z| = 500 pc. M16 reported

the energy loading factor of total outflow gas measured at 1.5zeff , where zeff is the initial scale height (with slightly

different definition from Equation 8), while they measure mass loading at both 1.5zeff and 500 pc. L17 reported mass,

energy, and metal loading factors for total and hot phases separately by measuring the outflow fluxes averaged over

space (|z| = 1 − 2.5 kpc) and time (last 40% of the simulation termination time). H19 and E19 measured outflow

fluxes through spherical shells as a function of r rather than z. For the purpose of our comparison here, we adopt the

compilation of Li & Bryan (2020) at r = 1 kpc. To make comparisons as fair as possible, we present plots for total

outflow loading factors and match heights as closely as possible given the limitations of reported measurements. We

plot C13/C15 results in the panel for |z| = 500 pc, M16 results in the panels for |z| = H and 500 pc, and L17, S18,

H19, and E19 results in the panel for |z| = 1 kpc.

Figure 12 plots ηM vs Σgas measured at (a) H, (b) 2H, (c) 500 pc, and (d) 1 kpc, in comparison to the literature

results. C13 reported two scaling relations between mass loading factor and gas surface density for two model series,

C13-KS and C13-dyn:

ηC13−KS
M = 13± 10

(
Σgas

M� pc−2

)−1.15±0.12

f0.16±0.14
g (35)

ηC13−dyn
M = 20± 8

(
Σgas

M� pc−2

)−0.82±0.07

f0.48±0.08
g . (36)

In panel (c), we show these two scaling relations for the surface density range consistent with that used in C13. In

panel (c), the loading factors we have found are generally higher than in C13 and M16 at a given Σgas. This is

11 Note that a larger box is required in our simulations since natural temporal and spatial correlations of SNe arising from self-consistent
modeling of star formation rates in our simulation produce larger superbubbles that would fill up the entire volume near the midplane if
the box were not large enough. A smaller horizontal domain size makes overall evolution burstier and more synchronized and results in
long-lasting imprints from an initial transient.
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mainly because our self-regulated SFR surface densities are higher than their adopted values. From self-regulation,

ΣSFR ∝ Σgasgz is expected, so that the vertical gravity should be taken into account in models assuming a prescribed

SFR surface density. Since the boxes in both C13 and M16 are shorter than ours, they generally adopted stronger

vertical gravity to confine the gas in the vertical domain. However, their adopted ΣSFR was not adjusted upward

corresponding to the expectation from self-regulated star formation at higher gz, and as a result their ΣSFR values

are lower than ours at a given Σgas. In addition, stronger gravity would result in higher volume density at a given

Σgas, while there would be additional differences in volume filling factors of different gas phases due to their artificial

cooling cutoff. The agreement of C13-dyn with our results is better since the SFR prescription for this model set

(implicitly) includes the effect of vertical gravity. The overall better agreement of L17 with our results shown in panel

(d) is because the adopted ΣSFR and vertical gravity are more consistent with our simulations (except at the lowest

Σgas). We note that apparent better agreement in panel (a) with M16 is a coincidence, since zeff is much smaller than

the corresponding scale height in our models (see Column (5) in Table 2).

Figure 13 plots the relation between ηM and ΣSFR in comparison to the literature results. Using the C13 imposed

relation between Σgas and ΣSFR (Equation 33 and Equation 34), we can convert Equation 35 and Equation 36 as a

function of ΣSFR to

ηC13−KS
M = 0.014

(
ΣSFR

M� kpc−2 yr−1

)−0.82

f0.16
g (37)

ηC13−dyn
M = 0.42

(
ΣSFR

M� kpc−2 yr−1

)−0.41

f0.07
g . (38)

In panel (c), we show these two scaling relations for the ΣSFR range consistent with that used in C13. The difference

in ΣSFR ranges between the two C13 model series is clearly demonstrated. Again, the C13-dyn results are in fairly

good agreement with our results, while C13-KS gives substantially lower mass loading factors. The M16 results in

panel (c) also show much lower mass loading factors at a given ΣSFR than our results, as in C13-KS. This implies that

ΣSFR is not the only parameter that sets ηM , but the gravity and/or gas density both matter in setting ηM .

At 1 kpc, our mass loading factors are again consistent with L17. Overall, we find that the slopes of our mass-loading

relationships are similar at different heights, and these are in good agreement with the literature results in cases where

Σgas, gz, and ΣSFR are consistent. In addition to local models, in Figure 13 (d) we show total mass loading from the

global dwarf simulations of S18, H19, and E19. These are all fairly consistent with our results. The present agreement

may imply that outflow loading factors are independent of global conditions. This is encouraging for the development

of generalized cosmological subgrid wind launching models from local simulations, although it will be imperative to

make further tests and comparisons in other regimes, including more extreme conditions.

We now turn to the energy loading factor. Figure 14 plots our relation between ηE and ΣSFR for all gas (dominated

by the hot medium), in comparison with the literature results. Note that the energy loading factors from C13-dyn

are not available, but both C13 and our results suggest that the energy loading factor is insensitive to Σgas and
ΣSFR. ηE ∼ 0.05–0.5 encloses the result reported in C15, which also envelopes our results in panel (c) quite well. L17

obtained a rather narrower range between 0.1-0.3, again without strong dependence on ΣSFR. Figure 10 also shows

weak dependence of the hot energy loading factors as a function of all galactic parameters we consider. Interestingly,

if the energy loading factor is measured at a fixed height, the dependence is even weaker: ηE,hot ∼ 0.1 at |z| = 500 pc

and 0.05 at |z| = 1 kpc. Overall, energy loading factors from our simulations are lower than the fiducial L17 results.

The enhanced energy loading factors in L17 are the consequence of larger imposed SN scale heights (∼ 150 pc) in

L17 compared to typical values in our simulations. L17 showed that the energy loading factors increase as the scale

height of SNe gets larger since SN explosions in the tenuous disk atmosphere more freely deliver injected energy to

the extraplanar region without significant energy loss by cooling (see also the similar tests in Appendix B of KO18).

In our simulations, the SN locations are determined by star formation, which in turn depend on the distribution of

gas; with “natural” SN positioning with respect to the vertical gas profile, our lower energy loading factors are more

consistent with superbubble breakout after shell formation (Kim et al. 2017a).

The energy loading factor can in principle be increased by strongly correlated SNe, since early explosions create

a low density cavity through which energy from subsequent events easily vents with minimal losses (Fielding et al.

2018). Our simulations in fact have highly correlated SNe, with typical cluster particle masses in the range 103–

104M� with maximum cluster mass up to 105–106M� (higher mass clusters for inner disk models). However, with

long-term evolution and self-consistent inflow/outflow, we find that the energy loading is much reduced compared to
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the idealized simulations of Fielding et al. (2018). This is because previous or neighboring events can both fill the

atmosphere with fountain gas and can close off chimneys, both of which render energy venting more difficult (see

Figure 1 and Figure 3). Global flow patterns driven by structures like spiral arms and/or bars may potentially reduce

inflow/outflow interactions locally; if fountain flows originating in arm regions fall preferentially in low density, interarm

regions, the energy loading factor may be enhanced in the arm region and reduced in the interarm region, while the

global average stays similar. We are currently analyzing the outflow properties from local simulations with spiral arms

utilizing the TIGRESS framework (Kim et al. 2020). Higher energy loading factors in global dwarf simulations (as

e.g. shown from H19, E19, and S18 in Figure 10) may also be related to the global geometry, but caution needs to be

taken since the cooling rates in dwarf simulations are generally lower due to the lower metallicity.

In Figure 15, we compare the correlation between our energy and SN-origin metal loading factors, in comparison with

the literature results (see also Li & Bryan 2020). Since SNe drive outflows, the fluxes of energy and SN-origin metals

have a common origin and are expected to correlate with each other, and C15 previously identified a tight correlation.

Note that if we use total metal fluxes, this correlation gets weaker (almost disappears). In our simulations, even with

ZSN = 10ZISM,0, more mass comes from the ISM than from SNe so the metal mass flux is dominated by the ISM-origin

metals (see Figure 5). We consider both cumulative and instantaneous SN-origin metal fluxes. The former is for metals

injected by SNe over the entire simulation duration and directly measurable from the metal tracer field employed in

the simulation. The latter is for metals injected by recent SN events and obtained from Equation 25 (see Section 4.2).

Note that although reported metal loading factors in other simulations technically correspond to cumulative SN-origin

metals, their metal loadings can be interpreted as instantaneous ones since C13 and L17 run for a much shorter time

than we do, and H19 and E19 consider low metallicity dwarfs.

Figure 15 plots energy loading factors as a function of cumulative (ηSN,cum
Z ; (a) and (c)) and instantaneous (ηSN

Z ; (b)

and (d)) SN-origin metal loading factors measured at |z| = 1 kpc. The top row ((a) and (b)) is for the total outflow

and the bottom row ((c) and (d)) is for the hot outflow. The dotted line is ηE = ηZ and the dashed line is ηE = 0.4ηZ ,

as suggested by C15. In contrast to other scaling relations, we use all points from time evolution for fitting since

temporal correlations within a model between the two loading factors are in fact physically meaningful; there is no

temporal offset between two fluxes, and loading factors use the same denominator (up to a constant factor).

Without radiative energy loss, the energy loading factor would be equal to the (instantaneous, SN-origin) metal

loading factor. As energy is lost by radiative cooling, ηE < 1 and ηE < ηZ (C15). In addition, due to “recycled”

metals through fountain flows, the cumulative SN-origin metal flux is larger than the instantaneous one. However,

energy in fountain flows is radiated away and not “recycled,” so that the ratio ηE/η
SN,cum
Z ∼ 0.09 is smaller than

ηE/η
SN
Z ∼ 0.3, as shown in Figure 15(a) and (b).12 The relation reported in C15 for the total outflowing gas,

ηE = 0.4ηZ , is quite close to our result for the instantaneous metal flux measurement.

As expected, the correlation gets tighter when only hot outflows are considered ((c) and (d)) since cooling is minimal

in hot outflows. The energy-to-metal loading factor ratio is also increased with the instantaneous metal loading factor.

The slope in hot outflows is steeper than unity, implying less efficient cooling when there is more efficient loading of

SN-origin metals in hot outflows. In other words, successful breakouts due to clustered SN events (indicated by high

SN-origin metal loading factor) load SN-energy to outflows more efficiently (Fielding et al. 2018). Using the fitting

result in Figure 15(d),

ηE,hot = 0.81ηSN
Z,hot

1.15
, (39)

and Equation 29, we obtain

vB,hot =

(
2ESN

m∗

)1/2(
ηE,hot

ηM,hot

)1/2

= 2.9× 103 km s−1fSN
M,hot

0.58
η0.08
M,hot. (40)

This says that the specific energy in hot outflows is most sensitive to the fraction of genuine SN material in outflows,

fSN
M,hot ≡

Zhot − ZISM

ZSN − ZISM

, (41)

12 Given the approximate nature of the instantaneous ISM metallicity (see Section 4.2), ηSN
Z can be erroneous if Z ≈ ZISM. This is most

serious for R16 in Figure 15(b) when cool outflows, which originate from the gas near the midplane used to define ZISM, dominate metal
flux. Outliers for low ηSN

Z points are subject to the definition of ZISM and should not be considered significant.
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which varies from event to event. To enhance fSN
M,hot and hence vB,hot on average, SN feedback needs to occur either

preferentially outside the main gas disk (L17) or inside a region in which a vertical cavity has been opened. The latter

case is not easily realized in our simulations, but may be possible in central starbursts.

6.2. Comparison with Observations

Observations of galactic outflows (winds) are challenging because the outflow is much more tenuous than the under-

lying galactic disk, so that both emission and absorption lines are weaker. At the same time, outflows possess complex,

multiphase structure, demanding high sensitivity observations of many gas tracers to quantify the mass (total and

metal), momentum, and energy budget of the outflow. Currently, direct observational constraints for outflow charac-

teristics and their scaling relations with galactic properties are neither strong nor comprehensive (see Rupke 2018, for

a review).

Optical and UV absorption lines surveys provide the largest body of data to study correlations between the outflow

characteristics and galaxy properties (Martin 2005; Rupke et al. 2005; Arribas et al. 2014; Chisholm et al. 2015;

Heckman et al. 2015; Heckman & Borthakur 2016; Cazzoli et al. 2016). From line profiles, it is relatively straightforward

to derive the characteristic velocity of the outflow (modulo different definitions adopted in different studies). A shallow,

positive correlation between outflow velocity and SFR is consistently observed in both neutral and ionized outflows;

vout ∝ Ṁ0.15−0.35
∗ . Heckman & Borthakur (2016) presented a similar correlation between outflow velocity and SFR

surface density, vout ∝ Σ0.34
SFR (essentially the same correlation is seen in stacking analysis of galaxies at z ∼ 2 by Davies

et al. 2019), while Chisholm et al. (2015) did not find a convincing correlation of vout with ΣSFR. Consistent with the

observations, we find weak scalings, approximately vout ∝ Σ0.2
SFR, for both hot and cool gas, but an order of magnitude

higher velocity for the former (Figure 11(a)). We note that these observations treat galaxies as a whole, and are

therefore not directly equivalent to our scaling relations (which would require observational resolution of . kpc and

sufficient sensitivity to detect individual disk “patches”). Also, the range of ΣSFR in observations described above is

generally on the high side, ΣSFR > 0.1M� kpc−2 yr−1, which only marginally overlaps with our parameter space.

The mass loading factor is a more difficult quantity to measure empirically. In estimating the mass loading from

observed interstellar absorption lines, many assumptions are involved, including the covering area of the outflow (a

combination of the opening angle, characteristic radius, and covering fraction of the outflow), the column density

conversion from a specific species to total hydrogen, and the characteristic velocity (e.g., Rupke et al. 2005). The

reported mass loading factors from observations of dwarf starbursts and LIRGs/ULIRGs are in the range ηM ∼ 0.1−10,

and have found either negative correlation (e.g., Heckman et al. 2015; Chisholm et al. 2017) or no correlation (e.g.,

Martin 1999; McQuinn et al. 2019) with galaxy mass (or circular velocity). Although the full galaxy mass range in

these studies is logM∗ ∼ 7 − 11, the low mass galaxy samples (at logM∗ ∼ 7 − 8) used in the study that found

negative correlation are more extreme starbursts than those in the study reported no correlation (see McQuinn et al.

2019). Arribas et al. (2014) observed local LIRGs and ULIRGs (logM∗ ∼ 9.5 − 11) with integral field spectroscopy

and obtained ηM ∝ M−0.43
∗ , similar to Chisholm et al. (2017). A direct comparison with our results is not possible,

since our work measures outflow rates and galactic properties locally, in contrast to the global outflow rates and galaxy

mass reported in observations. Still, it is encouraging that the observed estimates of ηM are similar to what we find

(Figure 13) at ΣSFR ∼ 0.1− 1, which overlaps with the observed range for these samples.

Interestingly, Arribas et al. (2014) reported a positive correlation between ηM and ΣSFR with a log-log slope of 0.17,

which is apparently in tension with our results (see Figure 9, with slopes ∼ −0.5 for cool gas) and those from other

numerical simulations, which all show negative scaling for ηM vs. ΣSFR (Figure 13). However, in Arribas et al. (2014)

ΣSFR ∼ 0.1− 100M� kpc−2 yr−1, which only marginally overlaps with the high end of our ΣSFR range. Furthermore,

the scatter in their mass loading factor is large and the significance of the fit is not high (Figure 14 of Arribas et al.

2014). Nevertheless, there is overall agreement in the range of mass loading factor, ηM ∼ 0.1 − 1. Our results also

suggest an intriguing possibility of a weakened correlation between ηM and ΣSFR at high ΣSFR, where hot outflows

begin to dominate the total mass (Figure 8 (a) and (b)).

In the future, spatially-resolved outflow observations utilizing sensitive integral field unit observations offer the

promise of enabling direct comparison with the kind of local scaling relations reported here. With future computa-

tional advances, it will also be possible to run global simulations with the current resolution and physics of our local

simulations, to connect with observed global relationships.

6.3. Physical interpretation of Scaling Relations
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Multiphase outflow launching in our simulation suite is an outcome of intricate interactions between SN feedback

and ISM dynamics, with complexity that precludes a purely analytic theory that can explain our quantitative findings.

Nevertheless, we are able to obtain insight to the physics behind the emergent scaling relations we have found using a

simple theoretical model of superbubble evolution and breakout. Given the simple assumptions we adopt (e.g., uniform

background medium and spherical symmetry), we will mainly focus on parameter dependence rather than coefficients.

Weaver et al. (1977) developed an analytic theory for the evolution of stellar wind-blown bubbles, and essentially

the same theory has subsequently been applied to superbubbles driven by clustered SNe (Mac Low & McCray 1988;

McCray & Kafatos 1987; El-Badry et al. 2019). In the model, the evolution after the radiative shell formation is

characterized by the energy injection rate Ėin and the ambient medium density ρ0. In Weaver et al. (1977), the

injected energy is shared among kinetic energy of the cooled shell Ekin,cool, thermal energy of the hot interior Eth,hot,

and radiative energy losses in the forward shocks Eshock−cooling. The classical theory predicts Ėkin,cool = (15/77)Ėin,

Ėth,hot = (5/11)Ėin, and Ėshock−cooling = (27/77)Ėin. Since Ėin ∝SFR, to zeroth order this explains why energy

loading factors of both cool and hot outflows are nearly constant with SFR (see Figure 8 (e) and (f)).

The classical theory neglects cooling at the interface between the hot interior and cool, dense shell, while in reality

the interface cooling Ėinterface−cooling is crucial for understanding the energy budgets in superbubbles (e.g., Kim et al.

2017a; Fielding et al. 2018; Gentry et al. 2019). Mixing layers between hot and cool gas are mediated by both (M)HD

instabilities and radiative cooling, best explored with very high-resolution simulations (e.g., Fielding et al. 2020a). In

the current simulations, the existence of intermediate temperature phase in outflows demonstrates that cooling in the

mixing layers plays a role in reducing the injected energy.

For present purposes, we employ a model used in 1D simulations of El-Badry et al. (2019), in which interface mixing

is parameterized via a diffusion coefficient λδv. The resulting interface cooling rate is Ėinterface−cooling = θĖin, with

θ depending on λδv and ambient density ρ0 as θ/(1 − θ) ∝ (λδv)1/2ρ
1/2
0 . Inclusion of the interface cooling reduces

Ėin to (1 − θ)Ėin, and with less power the bubble expands less rapidly. This results in Ėth,hot = (5/11)(1 − θ)Ėin

and Ėshock−cooling = (27/77)(1− θ)Ėin, so that a constant θ would still imply energy loading of hot and cool outflows

that are independent of SFR. In reality, the ambient medium in the real ISM (and in the current simulations) is

highly inhomogeneous and vertically stratified and the diffusion coefficient representing details of mixing layer varies,

so that θ is not constant. The weak scaling between ηE and ΣSFR (Figure 8 (e) and (f)) presumably arises from weak

dependencies in the averages over these variations.

Since a superbubble’s interior temperature depends very weakly on the ambient medium density (Thot ∝ ρ
2/35
0 for

conduction-mediated evaporation from Weaver et al. 1977; El-Badry et al. 2019, and Thot is also insensitive to ρ0 from

simulations of expansion in an inhomogeneous medium without conduction from Kim et al. 2017a), the constant mass

loading factor of hot outflows (Figure 8 (b)) is easily understood from ηM,hot ∼ ηE,hot/Thot with weakly-varying Thot.

For the mass loading factor of cool outflows, ηM,cool ∼ ηE,cool/v
2
out,cool, we need to understand what determines the

characteristic outflow velocity of the cool phase. To this end, we seek a scaling relation of the cooled shell velocity

when a superbubble breaks out of the disk (roughly R ∼ H). Applying the theory of El-Badry et al. (2019), the bubble
radius follows

R(t) = 83 pc(1− θ)1/5

(
Ėin

1046 erg yr−1

)1/5 ( n0

cm−3

)−1/5
(

t

Myr

)3/5

(42)

and the shell velocity is

vsh(t) = dR/dt = 49 km s−1(1− θ)1/5

(
Ėin

1046 erg yr−1

)1/5 ( n0

cm−3

)−1/5
(

t

Myr

)−2/5

. (43)

The time at which the bubble radius reaches the disk scale height is

tH ≡ 8.5 Myr(1− θ)−1/3

(
Ėin

1046 erg yr−1

)−1/3 ( n0

cm−3

)1/3
(

H

300 pc

)5/3

(44)

so that

vsh(tH) = 21 km s−1(1− θ)1/3

(
Ėin

1046 erg yr−1

)1/3 ( n0

cm−3

)−1/3
(

H

300 pc

)−2/3

. (45)
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Assuming all SNe that explode within an area πH2 contribute to superbubble breakout at R = H,

Ėin(< H) = πH2ESN
ΣSFR

m∗
= 3× 1047 erg yr−1

(
ΣSFR

0.1M� kpc−2 yr−1

)(
H

300 pc

)2

. (46)

We obtain

vsh(tH) = 63 km s−1(1− θ)1/3

(
ΣSFR

0.1M� kpc−2 yr−1

)1/3 ( n0

cm−3

)−1/3

. (47)

Since SFRs in our simulations agree well with the pressure-regulated, feedback-modulated star formation theory

(Ostriker & Kim in prep.; see also Ostriker et al. 2010; Ostriker & Shetty 2011; Kim et al. 2011), we may use the

relationships W = Pmid = ΥΣSFR where Υ is the total feedback yield13 (allowing for thermal and magnetic as well as

turbulent terms). We assume the characteristic ambient medium density to be the midplane density ρmid, which is

ρmid =
Pmid

σ2
z,eff

=
ΥΣSFR

σ2
z,eff

(48)

or

nmid = 1.7 cm−3

(
Υ

103 km s−1

)(
ΣSFR

0.1M� kpc−2 yr−1

)( σz,eff

40 km s−1

)−2

. (49)

We then finally obtain

vsh(tH) = 52 km s−1(1− θ)1/3

(
Υ

103 km s−1

)−1/3 ( σz,eff

40 km s−1

)2/3

, (50)

with no explicit dependence of vsh(tH) on ΣSFR. Note that in previous work seeking a physical interpretation of the

observed weak scaling between the outflow velocity and ΣSFR, the empirical Kennicutt-Schmidt relation ΣSFR ∝ Σ1.4

(Kennicutt 1998) was instead adopted to get vsh(tH) ∝ Σ0.1
SFRH

1/3 (e.g., Strickland et al. 2004; Chen et al. 2010).

In our simulation suite, we find a weak scaling of σz,eff ∝ Σ0.18
SFR (see Table 2) and Υ ∝ Σ−0.15

SFR (Ostriker & Kim in

prep.; see also Kim et al. 2011, 2013; Kim & Ostriker 2015b), yielding vsh(tH) ∝ Σ0.17
SFR. Modulo a hidden dependence

in (1 − θ), this explains the weak, positive scaling vout,cool ∝ Σ0.23
SFR and hence ηM,cool ∝ v−2

out,cool ∝ Σ−0.46
SFR , similar to

the results shown in Figure 11(a) and Figure 8(a).

We emphasize that vout,cool is a characteristic velocity from a rather wide distribution of vout rather than a single

“shell” velocity vsh(tH) as in the above simple theory. Even in idealized simulations of multiple SNe in an inhomoge-

neous medium (Kim et al. 2017a), the distribution of expanding velocities is broad, while the characteristic “knee” in

the velocity distribution increases with the energy injection rate (parameterized by an interval between SNe), but is

insensitive to density.

6.4. TIGRESS Outflow Models in Context

The methods used in this work have clear pros and cons in the context of galactic wind research. Here we review

the advantages and also discuss limitations of our methodology.

With the uniformly high resolution of our simulations (2 pc-8 pc; higher resolution for denser condition), the outflow

characteristics studied in this work arise not from ad hoc assumptions but from resolved key physical processes at

every relevant step:

• Star formation – Star formation occurs in gravitationally collapsing objects at high density and pressure that is

distinct from the ambient ISM (e.g., Mao et al. 2019).

• SN injection – Self-regulated SFRs and a population synthesis model applied to star cluster particles provide SN

rates and positions that have realistic space-time correlations with respect to each other and the distribution of

ISM gas.

• Superbubble evolution – The Sedov-Taylor stage of SNR evolution is resolved for more than 90% of individual

SNe, directly capturing hot gas creation and momentum injection.

13 The original notation used in Kim et al. (2011, 2013); Kim & Ostriker (2015b) for feedback yields was η, but here we instead use Υ since
η in the present paper is used to denote outflow loading factors.
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• Multiphase outflow evolution – The evolution of low-density outflows in extraplanar regions is followed using the

same spatial and time resolution as the higher-density ISM near the midplane (Vijayan et al. 2020), without

degrading the resolution as in (semi-)Lagrangian or adaptive mesh refinement schemes.

• Long-term evolution – Each model is run at least up to 1.5torb, covering a few star formation-feedback-wind

launching-outflow/inflow cycles.

The main caveats arise from the local approximation (adopted to achieve uniformly high resolution) and missing

physics (adopted to enable long-term evolution and a survey of parameters), e.g.,

• Missing global geometry – Outflow evolution to scales large compared to the launch region cannot be captured

in local models. Without streamline opening, hot winds do not reach their asymptotic velocity (e.g. Chevalier &

Clegg 1985; Fielding et al. 2017; Smith et al. 2018), and fountain flows that travel large radial distances cannot

be captured.

• Missing radial and cosmic accretion – Our simulation adopts outflow boundary conditions in the vertical direction,

and shearing-periodic boundary conditions in the horizontal directions. There are therefore no sources of new gas

to replace gas lost to star formation or winds. It is worth emphasizing that the galactic scale impact of outflows

would not be solely determined by wind launching properties characterized in this paper, but also interaction

with the CGM, which is in part shaped by cosmic flows that cannot be modeled in local simulations (Fielding

et al. 2020b). The relevant processes include cosmic accretion, gas flows driven by galaxy mergers, and outflows

from satellite galaxies.

• Missing early feedback – We only include the two dominant channels of stellar feedback, SNe and radiative

heating of warm-cold gas. It has previously been argued that dynamics driven by “early feedback” in the form of

radiation pressure, massive-star winds, and photoionization is needed to reduce densities and make SNe effective

(Gatto et al. 2017; Peters et al. 2017; Kannan et al. 2020). In fact, the natural clustering of SNe in our simulations

means that we fully resolve radiative supernova remnant evolution > 90% of the time. However, in environments

where the free-fall times in dense clouds is short, the lack of early feedback means star clusters may significantly

grow in the ∼ 3-4 Myr before the onset of the first SN; this may be responsible for unrealistically high SFRs

in our models R2 and R4. For lower density environments, SNe effectively disperse their parent clouds without

excessive star formation. In (short-term) simulations with conditions similar to model R8, Gatto et al. (2017)

found similar galactic outflow fluxes for models with and without stellar winds, while Kannan et al. (2020) found

similar outflow fluxes for models with and without radiation pressure.

• Other missing physics – Thermal conduction and cosmic rays are two major missing physical processes that

may have potentially significant impact on our results. Thermal conduction can load more hot gas during the

superbubble evolution (e.g., El-Badry et al. 2019). Since superbubbles in our simulations expand in a highly

inhomogeneous, turbulent ISM, there is a high level of mixing that can transfer gas between warm and hot phases

(see also Schneider et al. 2020, for evidence of this). It remains unclear whether fully-realistic simulations that

also include thermal conduction (which must be anisotropic to allow for the magnetic field) alter mass loading

of hot outflows significantly.

Cosmic rays are mainly accelerated in SN shocks and a provide a non-thermal pressure force with relatively low

radiative losses. Cosmic rays advect with the gas and also diffuse along the magnetic field, with flux limited

by the Alfvén speed. Although there are large uncertainties in diffusion coefficients and numerical difficulties in

modeling cosmic ray transport, cosmic-ray pressure gradients may be substantial and play a key role in driving

cooler, smoother, and slower galactic winds (e.g., Simpson et al. 2016; Mao & Ostriker 2018; Girichidis et al.

2018a).

7. SUMMARY

This work quantifies characteristics of multiphase outflows emerging from self-consistent, high-resolution simulations

of the star-forming ISM. Our suite of MHD simulations consists of 7 models covering a range of galactic conditions

that appear within normal star-forming galaxies like the Milky Way. Each model represents a local, ∼kpc-scale region

within a galactic disk. The ISM in each simulation is explicitly modeled by solving ideal MHD equations including
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the effect of galactic differential rotation, gas self-gravity, external gravity from the stellar disk and dark matter halo,

optically thin cooling from 10 K to 109 K, photoelectric heating onto small grains by FUV radiation, and energy

and momentum input from SNe. Gas collapses to make star cluster particles, which produce in-situ and runaway

SNe. The TIGRESS framework (see KO17 for numerical details) allows us to follow long-term evolution (more than

an orbit time, at least a few feedback cycles after the initial transient) of the star-forming ISM, with self-regulated

SFRs and ISM properties. Self-regulation cycles of star formation and feedback modulate outflows and inflows self-

consistently (Figure 3). Galactic winds emanating from superbubble breakout possess multiphase structure with

distinct characteristics (see KO18 and Vijayan et al. 2020 for in-depth analysis of the Solar neighborhood model R8).

We measure fluxes of mass (total and metal), momentum, and energy of each thermal phase of the outflowing gas at

four different locations: |z| = H, 2H, 500 pc, and 1 kpc; results are given in Section 4. We present scaling relations

for wind loading factors, characteristic velocities, and metal properties as a function of a variety of local galactic

properties. These scaling relations are reported separately for cool and hot phases (Section 5), and we also compare

scalings of total loading with results from other recent simulations (Section 6.1) and observations (Section 6.2). We

provide a physical interpretation of scalings based on a simple theoretical model of superbubble breakout (Section 6.3).

We provide full information from our outflow analyses at doi:10.5281/zenodo.3872049, which we hope can serve as a

benchmark for up-coming theoretical and observational studies.

Our key findings for galactic outflows are as follows:

1. Overall evolution – Star formation, SN feedback, and wind driving are all self-regulated and show clear cyclic be-

havior (Section 3). In low surface density models, the characteristic time scale for vertical oscillation (π/Gρtot)
1/2

is longer than the feedback time scale (or star cluster evolution time scale ∼ 40 Myr), leading to a well-defined

cyclic behavior for star formation and outflow fluxes governed by vertical oscillation. In high surface density

models, in contrast, the natural vertical oscillation period is shorter than the duration of feedback from a burst,

so that returning flows interfere with gas being launched by a burst. In these cases, evolution is more chaotic

and no clear correspondence between midplane star bursts and outflows above the disk exists. We thus construct

time-averaged outflow characteristics over a few feedback cycles (0.5 < t/torb < 1.5) to quantify the overall

behavior, rather than individual bursts. This is especially important in the measurement of “loading factors,”

for which a mismatch between time-dependent outflow fluxes and offset time-dependent reference fluxes (set by

SN/star formation rates) can produce quite misleading instantaneous measurements for loading.

2. Emergent multiphase outflow ranges – For the range Σgas ∼ 1 − 100M� pc−2 and Σ∗/(2z∗) + ρdm = 0.005 −
1M� pc−3 that are inputs to our simulations, the range of self-consistently regulated properties of the star-

forming ISM disk are ΣSFR ∼ 10−4−1M� kpc−2 yr−1, Pmid ≈ W ∼ 103−106kB cm−3 K, nmid ∼ 0.05−50 cm−3,

and tdep ∼ 102 − 104 Myr. From fluxes measured at |z| = H, the emergent loading factors of mass, momentum,

and energy are ηM ∼ 0.5 − 50, ηp ∼ 0.04 − 0.7, ηE ∼ 0.005 − 0.02, ηSN
Z ∼ 0.1 for cool outflows (T < 2 × 104 K)

and ηM ∼ 0.1− 0.3, ηp ∼ 0.07− 0.12, ηE ∼ 0.05− 0.25, ηSN
Z ∼ 0.1− 0.3 for hot outflows (T > 5× 105 K). The

intermediate phase (2× 104 K < T < 5× 105 K) is subdominant for all loading factors.

We note that at fixed height, the hot outflow energy loading factor is essentially constant across simulations

(e.g., Figure 14(c) and (d)), ηE,hot ≈ 0.1 for |z| = 500 pc and ηE,hot = 0.04 at 1 kpc. Similarly to the energy

loading factor, at fixed heights |z| = 500 pc and 1 kpc, the instantaneous SN-origin metal loading factor is more

or less constant, ηSN
Z,hot = 0.16 and 0.066, respectively. Figures and the data at different heights are available at

doi:10.5281/zenodo.3872049.

3. Scaling of loading factors – We find that mass is primarily carried by cool outflows and energy is primarily carried

by hot outflows, with the following scaling relations for loading factors at |z| = H:

log ηM,cool =−0.44+0.08
−0.08 log

(
ΣSFR,40

M� kpc−2 yr−1

)
− 0.07+0.16

−0.15 ± 0.27 Figure 9(b) (51)

=−0.54+0.08
−0.08 log

(
W/kB
cm−3 K

)
+ 3.23+0.39

−0.42 ± 0.23 Figure 9(g) (52)

= 0.70+0.09
−0.10 log

(
tdep,40

Myr

)
− 1.44+0.32

−0.29 ± 0.23 Figure 9(h) (53)

http://doi.org/10.5281/zenodo.3872049
http://doi.org/10.5281/zenodo.3872049
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log ηE,hot = 0.14+0.08
−0.08 log

(
ΣSFR,40

M� kpc−2 yr−1

)
− 0.70+0.12

−0.14 ± 0.22 Figure 10(b) (54)

= 0.17+0.09
−0.09 log

(
W/kB
cm−3 K

)
− 1.73+0.49

−0.47 ± 0.21 Figure 10(g) (55)

=−0.22+0.11
−0.10 log

(
tdep,40

Myr

)
− 0.27+0.30

−0.32 ± 0.20 Figure 10(h) (56)

The variation of mass loading factors with galaxy properties is strong in cool outflows and weak in hot outflows.

In fact, all loading factors of hot outflows only vary by a factor of 2-3 (right column of Figure 8), while galactic

properties like ΣSFR vary more than 4 orders of magnitude.

For cool gas, the momentum loading also varies significantly across galaxy environments, while energy and metal

loading do not (left column of Figure 8). We find overall a similar level of correlations between loading factors and

all local galactic properties we consider except Σgas (Figure 9, Figure 10). This is in part because the “derived”

galactic properties (ΣSFR, Pmid, W, nmid, and tdep) are self-regulated and connected with each other, and in

part because our parameter choice assumes an implicit correlation between gas (Σgas) and gravity (Σ∗/(2z∗) and

ρdm) parameters (see Appendix C). Subsequent work exploring a wider parameter space would be needed to

cover conditions in nearby observable targets including dwarf starbursts and LIRGs/ULIRGs, and the full range

of conditions that are relevant to theoretical galaxy formation models (Motwani et al. 2020).

We emphasize that the large mass loading of outflows at low SFR does not imply a massive cool wind because the

cool gas outflow velocities are low. Instead, at low SFR there is a heavily-loaded cool fountain.

4. Characteristic velocities – We define two characteristic velocities, an outflow velocity vout (Equation 28), and a

Bernoulli velocity vB (Equation 29). Since we include all gas that has positive outward velocity in computing

outflow fluxes, the low vout ∼ 10–110 km s−1 values we find for cool-phase outflows imply a large fraction of

the gas will fall back as fountains, as indeed the simulations show. For cool outflows, vB ∼ 20–140 km s−1 is

dominated by the kinetic term and is not much larger than vout. For hot outflows, vB ∼ 400–1400 km s−1 is

dominated by the thermal term, and is large enough that hot gas would escape far into halos. We find generally

very weak scaling of the characteristic velocities with galactic properties.

The velocity scaling relations at |z| = H obtained in this work are:

log

(
vout,cool

km s−1

)
= 0.23+0.04

−0.04 log

(
ΣSFR,40

M� kpc−2 yr−1

)
+ 1.78+0.07

−0.07 ± 0.14 Figure 11(a) (57)

= 0.27+0.03
−0.03 log

(
W/kB
cm−3 K

)
+ 0.10+0.17

−0.17 ± 0.10 Table 5 (58)

=−0.34+0.03
−0.04 log

(
tdep,40

Myr

)
+ 2.46+0.11

−0.11 ± 0.08 Table 5 (59)

log

(
vB,hot

km s−1

)
= 0.11+0.04

−0.04 log

(
ΣSFR,40

M� kpc−2 yr−1

)
+ 3.04+0.08

−0.08 ± 0.16 Figure 11(d) (60)

= 0.13+0.04
−0.05 log

(
W/kB
cm−3 K

)
+ 2.25+0.23

−0.21 ± 0.14 Table 5 (61)

=−0.17+0.06
−0.05 log

(
tdep,40

Myr

)
+ 3.37+0.16

−0.18 ± 0.14 Table 5 (62)

5. Metals – Metals in outflows originate from both the ISM and SN. Recent SN-origin material in hot outflows

amounts to typically 5–20% of the mass and 30-60% of the metal mass (these fractions generally increase with

ΣSFR).

The instantaneous SN-origin metal loading factor scales very weakly with all galactic properties, e.g., at |z| = H,

log ηSN
Z,hot = 0.11+0.07

−0.07 log

(
ΣSFR,40

M� kpc−2 yr−1

)
− 0.61+0.11

−0.12 ± 0.19 Figure 8(h) (63)



44 Kim et al.

The instantaneous SN-origin metal loading factor in cool outflows is nearly identical to that in hot outflows,

slightly lower near the disk and higher farther away.

The metal enrichment factor ζ is nearly flat at low ΣSFR, ζ ≈ 1 and 1.5 for cool and hot outflows, respectively. ζ

begins to increase with ΣSFR above ΣSFR > 0.1M� kpc−2 yr−1, reaching ζ ≈ 1.1 and 2 for cool and hot outflows,

respectively.

There is a very tight, positive correlation between energy and SN-origin metal fluxes (and hence loading factors)

in the hot outflow. A similar, but looser correlation also exists for the total outflow. Taking all outflow time

series into account, we find that the correlation is slightly super-linear with a log-log slope of 1.15 at |z| =

1 kpc (Equation 39). This means that the energy loading in outflows is more efficient (radiative cooling is

reduced) when more genuine SN material is loaded (= more successful breakout). This can be translated into a

correlation between the Bernoulli velocity (or specific energy) and the SN-origin mass fraction in the outflow as

in Equation 40.

6. Comparison with other simulations – Our results are overall consistent with previous local simulations as long as

their adopted ΣSFR are consistent with our predicted self-consistent values at a given Σgas and vertical gravity.

However, mass and energy partitions between phases may still be quite sensitive to the adopted SN distribution

and its mutual correlation with gas distribution.

Finally, we close this paper by putting the present work in the context of the general goal of the SMAUG project: the

development of physical subgrid models for galaxy formation models. Currently, in large-box cosmological simulations

and semi-analytic models, galactic winds are often implemented via scaling relations, with velocities typically set by

the halo potential and mass-loss rates tuned to match the resulting galaxy properties with observational constraints.

With this kind of approach, the connection between galaxies and dark matter halos (e.g., the stellar mass-halo mass

relation) is essentially imposed rather than emergent. In particular, prescriptions of this kind do not account for the

local ISM physics involved in launching winds. For example, our simulations show that the hot wind has a Bernoulli

velocity that is nearly independent of local conditions (reflecting the characteristic temperature of hot ISM gas), which

would lead to an asymptotic hot wind velocity that is independent of the halo potential, rather than scaling with the

halo potential. Our simulations also show that most of the mass is carried by a low-velocity cool phase, with velocity

relatively independent of local conditions but loading that decreases with the local ΣSFR. Winds that are emergent

from local galaxy properties (compared to previous globally-imposed wind scalings) are also likely to differ in their

implications for global stellar mass-halo mass relationships, through the distribution of ΣSFR in galaxies of different

mass at varying redshift.

Potentially, large-box cosmological simulations may require multiple layers of subgrid modeling to represent unre-
solved processes. The outflow characteristics quantified here provide the properties at the “base” of the outflow where

it is launched, provided there is proper knowledge of the resolved conditions within the ISM on those scales. For

cosmological zoom simulations, the resolution may be adequate (e.g. marginally resolving the ISM’s scale height) to

provide a reasonable value for ΣSFR (or Pmid or other properties as shown in Figure 9 and Figure 10), but insufficient

to represent a multiphase outflow; our results could then be applied to model that outflow launching. For large-box

cosmological simulations at lower resolution, a separate subgrid model would be required in order to predict ΣSFR (or

Pmid). A key conclusion is that to properly represent physically-realistic outflows, any subgrid model implementation

must incorporate at least two distinct components, one for a hot, fast flow and the other for a cool, slow flow.

In this paper, we have provided scaling relations for certain properties of phase-separated outflows, focusing especially

on the mass and energy loading relations for cool and hot phases that enable comparisons with previous theoretical and

observational work, and provide benchmarks for the future. However, we caution that the scaling relations provided

here are insufficient to build a proper subgrid model for a cosmological simulation. In particular, while here we have

provided information about “typical” (mass flux-weighted) velocities, the outflows in our simulations generally have

a range of velocities (characterized as an exponential distribution for the warm gas in KO18) and temperatures. In

a companion paper, we will quantify these distributions. We will also provide a guide to combine with the phase-

separated loading relations of this paper to build a subgrid wind model for use in galaxy formation simulations and

semi-analytic models.
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APPENDIX

A. CONVERGENCE WITH RESOLUTION AND BOX SIZE

The numerical convergence of the TIGRESS framework has been extensively demonstrated and discussed in KO17

(for general ISM properties, star formation rates, and outflow fluxes), and in KO18 (for multiphase characteristics

of outflows). For the Solar neighborhood model (R8 in Table 1), we showed that marginal convergence is achieved

at 16 pc and more robust convergence at 8 pc. Due to the generally shorter dynamical time and length scales, we

anticipate more stringent convergence conditions in higher density environments. The simulation parameters shown

in Table 1 indeed adopt finer spatial resolution for these models.

To test resolution convergence, here we present results from a model suite with two times poorer spatial resolution

than the standard model suite. Note that given the stochastic nature of each simulation’s evolution, only statistical

comparisons are possible between different resolutions. Figure 16 plots the mass loading factor of cool outflows and

energy loading factor of hot outflows for selected galactic properties (see Figure 9 and Figure 10). The lower resolution

models are in good agreement with higher resolution models, falling on the reported scaling relations within one-sigma

uncertainty levels.

To test box size convergence, we rerun model R2 at lower resolution ∆x = 4 pc and varying horizontal domain sizes

from smaller Lx = Ly = 256 pc to standard 512 pc to larger 1024 pc, while our standard choice is ∆x = 2 pc and

Lx = Ly = 512 pc. We use model R2 because this model is expected to show the largest box size dependence due to its

shortest gravitational time scale comparable to star cluster evolution time scale. Figure 17 compares time evolution

(left) and mean/standard deviation (right) over 0.5 < t/torb < 1.5 for a few selected quantities, ΣSFR in (a) and (b),

mass flux and loading of cool outflows in (c) and (d), respectively, and energy flux and loading of hot outflows in (e)

and (f), respectively. We confirm that the lower resolution model is in good agreement with the standard model as

already demonstrated in Figure 16.

There are general increasing trends with box size in both mass and energy fluxes and loading factors. Our choice of

box size is smaller or comparable to the Toomre length scale,

λT ≡
4π2GΣgas

κ2
= 850 pc

(
Σgas

100M� pc−2

)(
Ω

100 km s−1 kpc−1

)−2

, (A1)

above which axisymmetric gravitational instability is suppressed by epicyclic motions. This means that if the large

scale coherent structure is not destroyed by feedback within the gravitational time scale, the entire gas disk would

collapse globally. For R2, tg . tosc, tevol, we anticipate large scale gravitational collapse from the initial conditions. In

this case, star formation is more clustered with a larger box, resulting in stronger feedback and higher loading factors,

especially, for the energy loading factor (Figure 17(f)). Such strong bursts may indeed exist in galactic centers. As the

validity of the local approximation is in question as L gets closer to R0, however, we limit our model to a moderate box

size, but still large enough to capture spatial correlation of SNe to some extent. Global modeling is clearly necessary

in this regime.

B. INSTANTANEOUS LOADING FACTORS WITH DELAYED NORMALIZATION

In our simulation suite (see Figure 4 for example), we observe more than an order of magnitude temporal fluctuations,

and generally a delay between a peak in the SN rate and the enhancement in the outflow flux. As we discussed in

Section 4.3, the complicated quantitative behavior makes it difficult to define instantaneous loading factors in realistic

simulations where both feedback injection rates and outflow rates are self-consistently modulated (e.g., Muratov et al.

2015). For example, Figure 18 plots the normalized mass outflow rate and SN rate for all models. Overall, there is

stronger temporal fluctuation in outflow rates than SN rates. Often, a moderate level of continuous SN explosions does

not create corresponding outflows (e.g., t/torb = 0.8–1 for LGR8), mainly due to strong inflows of material ejected

by previous outflows. For this reason, attempting a one-to-one mapping of the peaks of outflow rate and SN rate (or

SFR) with a constant time delay generally fails in our simulations. It is worse at higher SFRs and not particularly

better for different physical quantities (momentum, energy, and metal) and phases.

Nevertheless, we have tested defining a delay time in two ways, in order to investigate the uncertainty in calculation

of loading factors. (1) We calculate the Pearson correlation coefficient between the SN rate and outflow rates averaged
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Figure 16. Resolution convergence for scaling relations of loading factors. Top: scaling relations of cool mass loading factor.
Bottom: scaling relations of hot energy loading factor. The mass and energy fluxes are both measured at |z| = H. From left to
right, the x axes denote SFR surface density with τbin = 40 Myr ((a)/(e)), midplane total pressure ((b)/(f)), total gas weight
((c)/(g)), and gas depletion time ((d)/(h)). Simulation results from standard and low resolution model suites are presented as
lighter and darker symbols, respectively (see legends distributed over panels). The best fit lines for standard and low resolution
models are shown as black and magenta solid lines, respectively.

over |z| = H–2H, and find the delay time that maximizes the correlation. We then compute the mean loading

factors using the shifted reference flux. (2) We construct model fluxes, Fq,model ≡ AqFq,ref(t − dtq), with a grid of

dt ∈ (0, 50 Myr) and logAq ∈ (−2, 2) for q = M and E to search Aq and dtq that minimizes
∫ 1.5torb

0.5torb
(Fq −Fq,model)

2dt.

Note that Aq is equivalent to ηq.

Table 6 lists the delay times and loading factors obtained by two methods along with the loading factors without

time delay. In Figure 18, we also show the result using the time delay of Column (3). The delay times found in this

way are longer in models with longer tosc. The derived loading factors are consistent within the intrinsic uncertainty

arising from the temporal fluctuations and mismatch between outflow and SN rates. The mass loading factor estimated

by model fitting gives generally smaller values, but not very different from other estimates.

C. SCALING RELATIONS WITH INPUT PARAMETERS

In the main portion of the paper, we provided scaling relations for loading factors with respect to the self-regulated

ISM properties such as ΣSFR and Pmid (see Section 5). Here, we additionally present scaling relations with respect to

the input model parameters in Table 1. Figure 19 shows the mass loading factor of the cool outflow (top row) and the

energy loading factor of the hot outflow (bottom row) at |z| = H as a function of initial gas surface density (Σgas,0),

stellar+dark matter midplane volume density (ρsd ≡ Σ∗/(2z∗) + ρdm), and angular velocity of galactic rotation (Ω).

Based on the intrinsic scatter (σint in each panel of Figure 19), we find that the energy loading ηE,hot correlates better

with “gravity-parameter” ρsd, while mass loading ηM,cool correlates better with “gas-parameter” Σgas,0. Both loading

factors show good correlation with Ω. Overall, ηM,cool better correlates with the self-regulated ISM properties shown

in Figure 9 than with the input model parameters shown in Figure 19. We note that the input parameters are not

chosen to be fully independent of each other: roughly, Σgas,0 ∝ ρsd with two different normalizations for the R and

LGR series, and ρsd ∝ Ω2.
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Figure 17. Box size convergence test for R2. The “standard” model adopts a spatial resolution ∆x = 2 pc and horizontal
domain size Lx = Ly = 512 pc, while the other models adopt ∆x = 4 pc with varying Lx = Ly = Lpc shown in the model
name. Left: Time evolution of (a) ΣSFR,40, (c) FM,cool, and (e) FM,cool over 0.5 < t/torb < 1.5. Right: Mean and standard
deviation over 0.5 < t/torb < 1.5 for (b) ΣSFR,40, (d) ηM,cool, and (f) ηE,hot.
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Figure 18. Comparison between outflow rate and SN rate. All quantities are normalized by their own mean over the time
range shown in the plot. Mass outflow rates averaged over |z| = H–2H are compared with original and delayed SN rates. The
time delay maximizing the Pearson correlation coefficient (Column (3) in Table 6) is applied.
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Table 6. Delay Times and Loading Factors

Model (q,ph) ηq,ph dtcorr[Myr] ηcorr dtmodel[Myr] ηmodel

(1) (2) (3) (4) (5) (6) (7)

R2 (E,hot ) 0.15 1.4 0.14 2.0 0.14

R2 (M ,cool) 0.84 0.98 0.83 3.1 0.36

R4 (E,hot ) 0.13 2.9 0.12 2.9 0.11

R4 (M ,cool) 1.8 6.4 1.6 6.4 0.79

R8 (E,hot ) 0.053 16 0.053 16 0.071

R8 (M ,cool) 4.5 12 4.5 12 4.0

R16 (E,hot ) 0.023 21 0.023 21 0.025

R16 (M ,cool) 31 26 32 35 25

LGR2 (E,hot ) 0.074 4.9 0.07 4.9 0.079

LGR2 (M ,cool) 1.2 3.4 1.1 2.9 0.89

LGR4 (E,hot ) 0.057 3.9 0.058 2.9 0.063

LGR4 (M ,cool) 3.4 2.0 3.4 2.0 3.2

LGR8 (E,hot ) 0.053 11 0.055 11 0.089

LGR8 (M ,cool) 7.3 11 7.6 11 8.9

Note— Column (2): combination of the outflow quantity ‘q’ and phase ‘ph’
used to measure the delay time and loading factor. Column (3): loading
factors reported in Section 5 without any time delay. Columns (4) and
(5): delay time and loading factor maximizing the Pearson correlation
coefficient between SN rate and outflow rate. Columns (6) and (7): delay
time and loading factor minimizing the difference between the delayed and
measured model fluxes.
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Figure 19. Scaling relations of cool mass loading and hot energy loading factors with simulation input parameters. The
mass and energy fluxes are measured at |z| = H. Figures at different heights are available at https://changgoo.github.io/
tigress-wind-figureset/figureset.html. The simulation results and fitting results are presented as in Figure 8.

https://changgoo.github.io/tigress-wind-figureset/figureset.html
https://changgoo.github.io/tigress-wind-figureset/figureset.html
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