Multiphase Galactic Winds

Supernovae drive hot (>10⁶ K) winds that are peppered with pockets of cold (~10⁴ K) gas out into the surrounding circumgalactic medium. The fate of these cold clouds — and their impact on the hot wind — depends on the competition between turbulent shredding and radiative cooling.

The Impact of the Hot Wind on the Cold Clouds

The relative motion of the hot wind and a cold cloud gives rise to a *turbulent radiative* mixing layer (TRML) at their interface. The cloud's fate is set by the relative timescales for cooling (t_{cool} ; primarily set by the pressure and metallicity) and mixing ($t_{mix}=r_{cl}/v_{turb}$; where r_{cl} is the cloud's size and v_{turb} is the turbulent velocity).

 t_{cool} Clouds grow by drawing in the hot wind which then cools and condenses

t_{mix} Clouds are depleted by turbulent shreddin

In large clouds cooling wins $t_{cool} < t_{mix}$

In small clouds shredding wins

 $t_{\rm mix} < t_{\rm cool}$

Gain/lose mass from/to the clouds Cold clouds -

— Hot wind

Galaxy

Supernovae

Circumgalactic medium

The Impact of the Cold Clouds on the Hot Wind

The clouds back react causing the wind to:

Decelerate as momentum transfers to the clouds Heat up from thermalization of relative kinetic energy **Cool down** as it mixes with the cold material