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ABSTRACT
We revisit the question of ‘hot mode’ versus ‘cold mode’ accretion on to galaxies using steady-
state cooling flow solutions and idealized 3D hydrodynamic simulations. We demonstrate
that for the hot accretion mode to exist, the cooling time is required to be longer than
the free-fall time near the radius where the gas is rotationally supported, Rcirc, i.e. the
existence of the hot mode depends on physical conditions at the galaxy scale rather than
on physical conditions at the halo scale. When allowing for the depletion of the halo
baryon fraction relative to the cosmic mean, the longer cooling times imply that a virialized
gaseous halo may form in halo masses below the threshold of ∼ 1012 M� derived for
baryon-complete haloes. We show that for any halo mass there is a maximum accretion
rate for which the gas is virialized throughout the halo and can accrete via the hot mode
of Ṁcrit ≈ 0.7(vc/100 km s−1)5.4(Rcirc/10 kpc)(Z/ Z�)−0.9 M� yr−1, where Z and vc are the
metallicity and circular velocity measured at Rcirc. For accretion rates � Ṁcrit the volume-
filling gas phase can in principle be ‘transonic’ – virialized in the outer halo but cool and
free-falling near the galaxy. We compare Ṁcrit to the average star formation rate (SFR) in
haloes at 0 < z < 10 implied by the stellar-mass–halo-mass relation. For a plausible metallicity
evolution with redshift, we find that SFR � Ṁcrit at most masses and redshifts, suggesting that
the SFR of galaxies could be primarily sustained by the hot mode in halo masses well below
the classic threshold of ∼ 1012 M�.

Key words: galaxies: formation.

1 IN T RO D U C T I O N

The dynamics of the volume-filling gas phase in dark matter haloes,
and the nature of its accretion on to the galaxy, crucially depend
on whether the cooling time tcool of virialized gas is longer or
shorter than the free-fall time tff. Since tff roughly equals the sound-
crossing time in virialized gas, if tcool > tff then the volume-filling
phase can be quasi-static, supported against gravity by thermal
pressure. Galaxy accretion in this regime is gradual and regulated
by energy losses to radiation. In contrast, if tcool < tff then the rapid
cooling prevents the formation of a pressure-supported gaseous
halo, and the halo gas free-falls on to the galaxy. These two distinct
regimes for the nature of galaxy accretion, known, respectively, as
‘hot mode’ and ‘cold mode’ accretion, were originally discussed
by White & Rees (1978) who demonstrated that the ratio tcool/tff

increases with halo mass Mhalo. They identified a threshold mass
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scale of Mthres ∼ 1012 M� where tcool ∼ tff, similar to the threshold
previously derived for self-gravitating gas clouds (Rees & Ostriker
1977; Silk 1977). Birnboim & Dekel (2003, hereafter BD03) and
Dekel & Birnboim (2006) later connected these two regimes to
the stability of the virial shock. Using analytic arguments and 1D
simulations, they demonstrated that the rapid cooling of post-shock
gas in low-mass haloes leads to an unstable shock, so gas accreting
from the intergalactic medium (IGM) remains cool (∼ 104 K) and
free-falling down to the galaxy scale. Once however Mhalo surpasses
Mthres ∼ 1011.5 M� the conditions for a stable shock are met at the
galaxy scale, and a shock forms and expands into the halo heating
the volume-filling phase to the virial temperature Tvir.

More recently, Fielding et al. (2017) used idealized 3D simula-
tions to study how the two regimes for the halo gas are affected by
kinetic feedback from stars. They demonstrated that in the Mhalo >

Mthres regime the outflows are confined by the hot halo gas, and the
physics of the volume-filling phase are similar to that suggested by
BD03. In low-mass haloes however the effect of feedback is much
more dramatic – galaxy outflows shock against IGM inflows at halo
radii, well beyond the radius where the shock initially forms in the
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BD03 simulations. In this regime the halo gas forms a multiphase
medium dominated by turbulence and bulk inflows/outflows.

A considerable effort has been devoted to detecting these two
regimes for galaxy accretion, and the transition between them,
in cosmological simulations (e.g. Kereš et al. 2005, 2009, 2012;
Birnboim, Dekel & Neistein 2007; Ocvirk, Pichon & Teyssier
2008; Brooks et al. 2009; Oppenheimer et al. 2010; Faucher-
Giguère, Kereš & Ma 2011; van de Voort et al. 2011; Nelson et al.
2013; Correa et al. 2018). To discriminate between gas which has
shocked prior to accretion and gas which has not shocked, most
of these studies identified the maximum temperature Tmax a fluid
element had reached before accreting on to the galaxy. In studies
where the ‘hot’ and ‘cold’ accretion modes are differentiated by
a constant cut in temperature Tcut ≈ 105.5 K the gas was found
to be entirely cold below Mhalo ≈ 1011.5 M�, consistent with the
conclusion of BD03 (e.g. Kereš et al. 2005). This trend however
could be driven by Tvir dropping below Tcut in low-mass haloes,
in which case even virial-temperature gas would be classified as
‘cold’, as discussed in Nelson et al. (2013) and acknowledged by
many of the cited studies. Nelson et al. (2013) scaled Tcut with
Tvir and found that the hot accretion mode is present even in halo
masses well below 1011.5 M� (see also fig. 8 in van de Voort et al.
2011), in contrast with the 1D simulations of BD03. However,
given that even in the free-fall regime inflows potentially shock and
reach a temperature ∼Tvir due to the interaction with outflows as
seen in the simulations of Fielding et al. (2017), Tmax may not be a
good discriminator between the two regimes. An alternative method
to distinguish between gradual, pressure-supported accretion and
supersonic free-fall in cosmological simulations would thus be
useful.

Another complication arises since tcool depends on the gas density,
which implies that the transition between cold- and hot-mode
accretion depends on the gas mass Mgas available to form the
hot volume-filling phase. The idealized studies mentioned above
assumed Mgas roughly equals the cosmic halo baryon budget fbMhalo

(fb ≈ 0.16 is the cosmic baryon fraction). If however a significant
fraction of halo baryons are confined to filaments and subhaloes,
or, alternatively, if the halo baryons were ejected from the halo
by unbound galaxy outflows at earlier times, then Mgas will be
lower than fbMhalo, tcool would correspondingly be longer, and the
transition to pressure support would occur in haloes less massive
than derived by assuming haloes are baryon complete. Specifically,
there is mounting observational evidence for the existence of strong
unbound outflows, especially in dwarf galaxies which reside in
haloes with mass lower than Mthres (e.g. Chisholm et al. 2017;
Heckman & Thompson 2017). Also, cosmological simulations
which model galaxy outflows often predict halo gas masses lower
than fbMhalo. In the FIRE zoom-in simulations Hafen et al. (2019)
find a baryon mass of ≈0.3fbMhalo in ∼ 1011 M� haloes at low
redshift. In lower mass ∼ 1010 M� haloes in FIRE the baryon
fraction is even lower, less than 10 per cent of the cosmic baryon
budget. A low baryon mass fraction in low-mass haloes is found
also in the EAGLE cosmological simulations (Davies et al. 2019;
Oppenheimer et al. 2020).1 Thus, both observations and some
theoretical studies suggest that Mgas could be well below fbMhalo

in haloes with mass below the threshold derived assuming Mgas ≈
fbMhalo, in which case hot-mode accretion could be important also
in low-mass haloes.

1In contrast, the baryon fraction in dwarf haloes in the IllustrisTNG
simulations appears to be closer to the baryon budget (Nelson et al. 2018).

In this work (Paper II), we deduce the conditions under which hot-
mode accretion is possible by analysing the properties of cooling
flow solutions. Cooling flows were originally discussed in the
context of gas in the centres of clusters (Mathews & Bregman
1978; Cowie, Fabian & Nulsen 1980; Fabian, Nulsen & Canizares
1984; Bertschinger 1989), and adapted to galaxy scale haloes in the
first paper in this series (Stern et al. 2019, hereafter Paper I). Here,
we focus on halo masses which are comparable or below the classic
threshold for the formation of a hot halo Mthres ∼ 1012 M�. We
demonstrate that in low-mass haloes hot-mode accretion depends
on the location of the sonic point in the cooling flow that forms – only
if the sonic radius is within the galaxy scale is hot accretion possible.
This condition was only briefly mentioned in classical studies of the
cooling flow solution (Mathews & Bregman 1978) since in cluster-
scale haloes the expected sonic radius is well within the central
galaxy and thus hot-mode accretion is always possible. We further
show that our formalism for identifying the onset of hot-mode
accretion yields similar numerical values to the formalism in BD03,
though it provides alternative physical intuition for the transition
between the two regimes for galaxy accretion. Specifically, the
cooling flow formalism suggests that near the threshold for hot-
mode accretion the halo may assume an ‘inverted’ configuration,
in which the volume-filling phase is hot and pressure-supported on
large scales but cool and free-falling near the galaxy.

To account for the possibility of a gas mass <fbMhalo due to
e.g. galaxy outflows, we treat the hot gas mass in our analysis
as a free parameter. Our derivation thus yields for any Mhalo and
redshift z a maximum gas mass in which hot-mode accretion is
possible, or equivalently a maximum hot-mode accretion rate Ṁcrit

(see below). We then compare the derived Ṁcrit to the average star
formation rate (SFR) in dark matter haloes at 0 < z < 10, which has
been constrained via abundance matching techniques and ‘empirical
models’ for how galaxies populate dark matter haloes (e.g. Moster
et al. 2010; Behroozi, Wechsler & Conroy 2013; Moster, Naab &
White 2018; Behroozi et al. 2019).

This paper is organized as follows. In Section 2, we derive the
maximum hot-mode accretion rate Ṁcrit using analytic arguments,
and corroborate our conclusions with idealized hydrodynamic
simulations. In Section 3, we explore the dependence of Ṁcrit on
halo and gas parameters, while in Section 4 we compare Ṁcrit with
the mean SFR in haloes derived by empirical models. We summarize
and discuss our results in Section 5. In a follow-up paper (hereafter
Paper III), we compare our results to the properties of halo gas in the
FIRE cosmological simulations (Hopkins et al. 2018). Throughout
the paper, we assume a flat �CDM cosmology with Hubble constant
H0 = 68 km s−1 Mpc−1 and �m, 0 = 0.31 (Planck Collaboration
XIII 2016).

2 H OT V E R S U S C O L D AC C R E T I O N
AC C O R D I N G TO C O O L I N G FL OW SO L U T I O N S

In this section, we use cooling flow solutions to derive a necessary
condition for hot-mode accretion, and show that this condition
can be cast as a maximum hot-mode accretion rate Ṁcrit. In our
derivation, we assume that the background potential is constant
in time, and limit the effects of feedback in our analysis to the
possible enrichment and depletion of the halo gas, i.e. ongoing
feedback heating is assumed to be negligible. The validity of
these assumptions is discussed below and tested in Paper III using
cosmological simulations.

We first demonstrate in Section 2.1 how Ṁcrit arises by requiring T
≈ Tvir and tcool � tff in a steady spherical flow. We then corroborate
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our derivation using the family of cooling flow solutions to the
steady-state flow equations (Section 2.2), and using idealized 3D
hydrodynamic simulations (Section 2.3).

2.1 The tcool � tff condition

The energy conservation equation for a steady spherical flow is
(Appendix A)

vr

d

dr

(
1

2
v2

r + γ ε + �

)
= −q, (1)

where r is the radius, vr is the radial velocity, the sum in the brackets
is the Bernoulli parameter, ε is the specific thermal energy, γ = 5/3
is the adiabatic index, � is the gravitational potential, and q is
the cooling rate per unit mass. In a pressure-supported flow the
kinetic term is small, while the roughly isothermal potential in
dark matter haloes implies that the temperature is approximately
constant, so the first two terms in the brackets can be neglected. We
thus get

d�

dr
≈ − q

vr

= −n2
H�

ρvr

, (2)

where in the second equality we replaced q with n2
H�/ρ (ρ and nH

are the mass and hydrogen density and � is the cooling function).
The accretion rate Ṁ = −4πr2ρvr hence equals

Ṁ ≈ 4πr2n2
H�

d�/dr
. (3)

The maximum accretion rate for the hot gas can be derived from
equation (3) by requiring that the density is low enough so tcool �
0.7tff. The motivation for the 0.7 pre-factor is given in Section 2.2.
We use

tff =
√

2r

vc
, (4)

where vc is the circular velocity, and

tcool = ε

q
= ρε

n2
H�

. (5)

The maximum gas density is hence

nH, max ≈ mpvcε

0.7 · √
2X�r

≈ mpv
3
c

X�r
, (6)

where X is the hydrogen mass fraction and mp is the proton mass.
In the second equality, we used ε ≈ v2

c , which is equivalent to T
≈ (4/3)(vc/vvir)2Tvir, where vvir = vc(Rvir) is the virial velocity and
Tvir = μmpv

2
vir/2k is the virial temperature. The pre-factor in this

relation is also justified in Section 2.2. Plugging equation (6) in
equation (3) and using d�/dr = v2

c /r we get a maximum hot gas
accretion rate at radius r of

Ṁmax(r) ≈ 4πm2
pv

4
c r

X2�(r)
. (7)

In a dark matter halo with an NFW profile (Navarro, Frenk &
White 1997) vc is roughly independent of radius, while the roughly
constant temperature suggests � is also approximately constant, or
decreases outwards if metallicity gradients are significant. Equa-
tion (7) thus suggests that Ṁmax(r) increases with radius. This
expected increase of Ṁmax outwards is robust to changes of the
potential due to an average central galaxy, which is expected to
cause vc near the centre to fall off no faster than ∼r−0.1 (Paper I, see

fig. 1 there). Thus, for the flow to be pressure-supported at all radii
we need to evaluate Ṁmax at the innermost radius of the flow. For
this inner radius, we use the circularization radius Rcirc at which the
centrifugal and gravitational forces balance, and thus the gas can be
supported by rotation rather than by thermal pressure (see further
discussion below). The choice of Rcirc for the innermost radius of the
flow is also motivated by observations which suggest galaxy sizes
are ∼Rcirc (e.g. Kravtsov 2013; Shibuya, Ouchi & Harikane 2015).
Using Rcirc in equation (7) hence implies a maximum accretion rate
for pressure-supported flows of

Ṁcrit = Ṁmax(Rcirc) ≈ 4πm2
pv

4
c Rcirc

X2�
.

= 1.7

(
vc(Rcirc)

100 km s−1

)4 (
Rcirc

10 kpc

)(
X2�(Rcirc)

10−22 c.g.s

)−1

M� yr−1.

(8)

The numerical values of vc and Rcirc in equation (8) correspond
roughly to a halo mass of ∼ 4 × 1011 M� at z = 0, though note
that the derivation is general and applies to haloes of all masses and
redshifts. We estimate Rcirc using the relation

vc(Rcirc)Rcirc = fλ

Jhalo

Mhalo
=

√
2fλλvvirRvir, (9)

where Jhalo and Rvir are the angular momentum and virial radius
of the dark matter halo, fλ accounts for differences between the
specific angular momentum of the baryons and the average of the
halo, and λ is the halo spin parameter defined in Bullock et al.
(2001):

λ ≡ Jhalo√
2MhalovvirRvir

. (10)

For fλ ≈ 1, Rvir ≈ 200 kpc, vc(Rcirc) ≈ vvir, and λ ≈ 0.035 (e.g.
in the Bolshoi–Planck simulation, Rodrı́guez-Puebla et al. 2016)
we get Rcirc ≈ 10 kpc. Equation (8) can be further elaborated by
approximating � in the metal-dominated regime as (e.g. Wiersma,
Schaye & Smith 2009)

� = 0.5 × 10−22

(
T

106 K

)−0.7 (
Z

0.3 Z�

)0.9

erg cm3 s−1, (11)

where Z is the gas metallicity, and this approximation is valid at T ∼
105−107 K and Z � 0.3 Z�. For T = 5 × 105(vc/100 km s−1)2 K
implied by ε = v2

c we get

Ṁcrit = 0.7

(
vc(Rcirc)

100 km s−1

)5.4 (
Rcirc

10 kpc

) (
Z(Rcirc)

0.3 Z�

)−0.9

M� yr−1.

(12)

2.2 Spherically symmetric cooling flow solutions

To further demonstrate that hot-mode accretion is possible only for
accretion rates below the critical value Ṁcrit derived in the previous
section, we utilize the family of cooling flow solutions derived in
Paper I. We start by discussing purely radial flows, and then include
the effects of angular momentum.

2.2.1 Cooling flows without angular momentum

Cooling flow solutions are derived from the spherical steady-state
equations for radiatively cooling gas in a constant gravitational
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potential:

Ṁ = −4πr2ρvr (13)

1

2

dv2
r

dr
= − 1

ρ

dP

dr
− v2

c

r
(14)

vr

d ln K

dr
= − 1

tcool
, (15)

where P is the gas pressure and ln K ≡ ln(kT /n
2/3
H ) is the entropy.

We integrate these equations as described in Paper I, requiring the
solutions to go through a sonic point and to be marginally bound at
large radii (Bernoulli parameter B → 0− as r → ∞). The transonic
condition is required since non-transonic solutions are either not
well defined at all radii (e.g. Bertschinger 1989), or everywhere
supersonic. The exact choice of the outer boundary condition does
not affect the conditions near Rcirc and hence is of no consequence
for the discussion here (see fig. B1 in Paper I). For a given cooling
function and gravitational potential the transonic and marginally
bound conditions yield a single-parameter family of solutions. We
showed in Paper I that gaseous haloes which are initially hydrostatic
converge on to these solutions within a cooling time.

For simplicity, we assume an isothermal gravitational potential,2

and address the implications of more realistic potentials below. As
instructive examples, we calculate four cooling flow solutions of
Z = Z�/3 gas in an isothermal potential with vc = 100 km s−1,
corresponding at z = 0 to Mhalo = 4 × 1011 M�. For � we use
the Wiersma et al. (2009) tables for z = 0, which account for
photoionization and heating by a Haardt & Madau (2012) UV
background. The panels in Fig. 1 plot T, nH, radial Mach number
M, and tcool/tff of the solutions. The solutions differ in their assumed
density normalization (second panel), where a higher normalization
corresponds to a higher inflow rate Ṁ due to the increased cooling
(Ṁ indicated in the top panel) and to a larger sonic radius Rsonic

(third panel). To demonstrate the dependence on Ṁ in this figure
we treat the density normalization as a free parameter, though for
realistic haloes it is bounded from above by the halo baryon budget
(see below).

Fig. 1 shows that in the outer subsonic part of the flows the
solutions satisfy the conditions for pressure support discussed
in the previous section: the gas temperature is roughly equal to
Tvir = 3.6 × 105 K (top panel) and the ratio tcool/tff is comparable or
larger than unity (bottom panel). In this region, radiative cooling is
balanced via heating by compression as the gas flows inwards. This
subsonic region can be approximated by the following self-similar
solutions3 to the flow equations (13)–(15), which are derived in the
subsonic limit (M2 
 1):

ε = 9

10
c2

s = v2
c (16)

nH =
√

Ṁv2
c

4π�
r−3/2 (17)

|vr | = r

tcool
= X

mp

√
Ṁ�

4πv2
c

r−1/2, (18)

where cs = √
(10/9)ε is the adiabatic sound speed. From equa-

tions (16) and (18), the Mach number in the self-similar solution is

2To calculate the Bernoulli parameter in an isothermal potential, we assume
the potential equals zero at r = 10 Mpc.
3These solutions correspond to the m = 0 solutions in Paper I, where m is
defined such that vc(r) ∝ rm.

Figure 1. Spherically symmetric cooling flow solutions for the volume-
filling gas phase in an isothermal potential with vc = 100 km s−1. The panels
show the temperature, density, Mach number, and tcool/tff of the solutions.
The four solutions are derived assuming no angular momentum and Z =
0.3 Z�, and differ in the assumed density normalization. The solutions are
transonic, forming a cool supersonic flow with tcool < tff within the sonic
radius. A higher density normalization corresponds to a higher Ṁ (noted in
M� yr−1 in the top panel) and to a larger sonic radius.

equal to

M ≡ |vr |
cs

= X

mp

√
9Ṁ�

40πv4
c

r−1/2, (19)

i.e.M increases inwards as in Fig. 1. The flow thus turns supersonic
roughly at

Rsonic ≈ 9ṀX2�

40πm2
pv

4
c

, (20)

where this estimate is approximate due to the inaccuracy of
estimating Rsonic using a solution in the subsonic limit. The estimate
for Rsonic in equation (20) is also an estimate of the radius where
tcool ≈ tff, since

tcool

tff
=

√
9

20

tcool

r/cs
=

√
9

20
M−1, (21)

where we used equations (4), (16), and (18). The sonic radius
is hence roughly the radius where tcool/tff = √

9/20 ≈ 0.7 (see
bottom panels of Fig. 1). In Section 2.1, we used this pre-factor
and equation (16) to derive equation (6), though note that these
relations are accurate only for an isothermal potential, and should
be considered approximate in the general case.

MNRAS 492, 6042–6058 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/4/6042/5716690 by Sim
ons Foundation user on 11 January 2021
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Fig. 1 shows that in the inner supersonic part of the solutions the
flow rapidly loses thermal energy until it reaches the equilibrium
temperature Teq ∼ 104 K. At the transition tcool is too short to
be compensated by heating due to advection as in the subsonic
regime, so the temperature decreases, which due to the shape of the
cooling function causes the cooling to accelerate and thus further
decrease the temperature. As a result of this rapid cooling process
the temperature drops by a factor of � 10 over merely a factor of
≈2 in radius. The sonic radius thus corresponds to where the flow
transitions from being largely supported against gravity via thermal
pressure to being unsupported and in free-fall.

2.2.2 Cooling flows with angular momentum

Dark matter haloes and the baryons associated with them are
expected to have angular momentum, due to tidal torques induced by
neighbouring haloes. To include the effects of angular momentum
in the 1D cooling flow solutions, we assume a uniform specific
angular momentum equal to vcRcirc, and modify the momentum
equation to (see e.g. Cowie et al. 1980; BD03):

1

2

dv2
r

dr
= − 1

ρ

dP

dr
− v2

c

r

[
1 −

(
Rcirc

r

)2
]

. (22)

This equation applies to a flow within the plane defined by the
angular momentum vector. To derive solutions relevant for hot-
mode accretion, we search for solutions to the modified flow
equations which satisfy vr → 0 as r → Rcirc, i.e. the flow stalls
at the circularization radius.4These solutions correspond to a radial
inflow at r � Rcirc supported by thermal pressure which connects
to a rotating flow at r ∼ Rcirc supported by angular momentum. As
an instructive example we assume Rcirc = 10 kpc, corresponding to
Mhalo = 4 × 1011 M� at z = 0 (equation 8). We impose the same
marginally bound outer boundary condition as used for the transonic
solutions discussed in the previous section. The thick blue and
purple lines in Fig. 2 plot two such solutions, for Ṁ equal to 0.7
and 3 M� yr−1 as in the corresponding non-rotating solutions from
Fig. 1 (also plotted in Fig. 2 as thin lines). The rotating and non-
rotating solutions differ significantly only at r � 1.5Rcirc, where the
rotating solutions stall while the non-rotating solutions continue to
accelerate inwards.

For the higher values of Ṁ of 15 and 60 M� yr−1 corresponding
to the green and yellow solutions, no solutions which stall at Rcirc

are possible. A transonic solution with a specific Ṁ is fully defined,
and thus cannot be made to satisfy a specific boundary condition
at Rcirc, as is possible for the blue and purple solutions which are
subsonic at all r > Rcirc. The thick green and yellow lines in Fig. 2
plot the corresponding transonic solution when angular momentum
is included in the momentum equations. These solutions are almost
identical to the no-angular momentum solutions down to Rcirc, and
indicate that even when angular momentum is included the flow
reaches Rcirc with supersonic speeds (where it would presumably
shock in a more realistic calculation).

The conclusion from Fig. 2 is that only if the condition

Rsonic � Rcirc (23)

is satisfied, where Rsonic is calculated in the no-angular momentum
limit, then the flow can reach Rcirc with T ≈ Tvir and a vanishing

4In practice, we integrate outwards from R0 = Rcirc(1 + ε1) assuming vr(R0)
= ε2vc, with ε1 = ε2 = 0.03.

Figure 2. Spherically symmetric cooling flow solutions for gas in an
isothermal potential with vc = 100 km s−1. The thick lines plot solutions for
a flow with uniform specific angular momentum, corresponding to rotational
support at an assumed circularization radius of Rcirc = 10 kpc. The values
of Ṁ are the same as in the no angular momentum solutions in Fig. 1
(plotted here as thin lines). In the blue and purple solutions the flow cools
just outside Rcirc and reaches Rcirc with a vanishing radial velocity. In the
green and yellow solutions the flow cools at Rsonic > Rcirc, and reaches Rcirc

supersonically. Solutions corresponding to hot-mode accretion throughout
the halo are possible only if Rsonic < Rcirc (where Rsonic is calculated in the
no-angular momentum limit), or equivalently if Ṁ < Ṁcrit (equation 8).

radial velocity. If condition (23) is violated as in the green and yellow
solutions, then the flow necessarily reaches Rcirc supersonically.

Fig. 3 depicts the three types of solutions discussed in this section.
The left-hand panel pictures a cooling flow with Ṁ < Ṁcrit, where
without angular momentum the sonic radius would be within Rcirc.
In this regime, the flow is pressure supported on all halo scales,
i.e. the flow is subsonic and has T ≈ Tvir, down to the radius where
the flow is supported by angular momentum. This type of flow
corresponds to the classic ‘hot accretion mode’. The right-hand
panel plots solutions with Ṁ sufficiently large such that the sonic
radius is beyond the virial radius and hence potentially outside the
accretion shock – the outer boundary of the region in which the
cooling flow solutions could be valid, since beyond the accretion
shock we expect a supersonic flow. This regime corresponds to the
classic cold flow regime where gas accreting from the IGM free-
falls all the way down to the galaxy. The middle panel plots cooling
flow solutions with Rcirc < Rsonic < Rvir, i.e the sonic radius is within
the range of radii where the cooling flow solutions could be valid.
In this regime, the gas is hot and pressure-supported in the outer
halo, but gas in the inner halo and specifically the gas accreting
on to the galaxy is cool and free-falling. In an isothermal potential
this scenario applies if 1 < Ṁ/Ṁcrit < Rvir/Rcirc ≈ 20, since the
sonic radius scales linearly with Ṁ (equation 20). However, since
Rsonic ∝ v−4

c , even a weak decrease of vc with increasing radius
would imply that Rsonic reaches Rvir at inflow rates smaller than
20Ṁcrit, and this intermediate regime would be relevant only over a
smaller range of Ṁ .

Due to the similarity of M−1 and tcool/tff in cooling flows
(equation 21), the condition (23) is equivalent to the condition tcool

� tff at Rcirc used in Section 2.1. Using equation (23) in equation (20)
yields the maximum accretion rate of the hot mode Ṁcrit, which is
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Figure 3. A cartoon picturing the three types of cooling flow solutions discussed in Section 2.2 and shown in Fig. 2. (Left) When Ṁ < Ṁcrit the flow is
subsonic and hot (T ≈ Tvir) down to the circularization radius. (Middle) When Ṁ � Ṁcrit the flow goes through a sonic point on the halo scale, and reaches the
galaxy as a cool (T ≈ 104 K) supersonic flow. (Right) When Ṁ � Ṁcrit the flow is supersonic and free falling at all halo radii. We consider only the scenario
depicted in the left-hand panel as ‘hot-mode accretion’.

given by equation (8). We note also that Quataert & Narayan (2000)
previously discussed the importance of the sonic radius in cooling
flows in isothermal potentials, and the associated mass inflow rate,
in the context of the interstellar medium of elliptical galaxies.

2.3 Hydrodynamic simulations

To support the above analytic results, in this section we utilize
idealized 3D hydrodynamic simulations similar to the simulations
used in Paper I, which are based on Fielding et al. (2017). The
simulations are run using the grid-based hydrodynamics code
ATHENA++ (Stone et al., submitted5) in a spherical-polar coordinate
system. The computational domain spans r = 1 kpc−10 Mpc, π /4
≤ θ ≤ 3π /4, and π /4 ≤ φ ≤ 3π /4, where θ and φ are the polar and
azimuthal angles. The grid has 64 cells in each angular direction
and 384 logarithmically spaced cells in r, which give approximately
1:1 cell aspect ratios. We adopt periodic boundary conditions in the
polar and azimuthal directions, while in the radial direction we
adopt outflow boundary conditions.

We solve the standard hydrodynamics equations with additional
source terms to include a static gravitational potential and ra-
diative cooling, using the same cooling function and constant
vc = 100 km s−1 as used to derive the steady-state solutions in
Figs 1–2. Self-gravity of the gas is neglected. Angular momentum
is implemented by initializing all fluid cells with a finite velocity
in the φ direction vφ such that all cells outside Rcirc have the same
specific angular momentum, corresponding to Rcirc = 10 kpc as in
Fig. 2. Within Rcirc, we assume vφ = vc in the initial conditions.
To avoid the accumulation of ∼ 104 K gas at � Rcirc during the
simulation we implement ‘star formation’ by removing gas that
satisfies T < 3 × 104 K and nH > 0.03 cm−3. Tests indicate that
the exact parameters of this prescription do not affect the results
except where noted below.

In order to simulate the different cooling flow regimes depicted in
Fig. 3, we run a simulation where Ṁ increases with time, from Ṁ 

Ṁcrit to Ṁ � Ṁcrit. To achieve this goal, the gas is initialized with a
hydrostatic pressure profile at all radii and is allowed to radiatively
cool. As demonstrated in Paper I, from this initial configuration the
flow is expected to converge on to one of the steady-state cooling

5https://princetonuniversity.github.io/athena/index.html

flow solutions, at radii smaller than the cooling radius (see figs
6–9 there). The mass inflow rate in the cooling flow that forms is
expected to evolve as (Bertschinger 1989, hereafter B89):

ṀB89(t, r 
 Rcool) ≈ 4πR2
coolρ(Rcool)

dRcool

dt
, (24)

where Rcool(t) is the cooling radius at which tcool = t. This relation
represents a ‘cooling wave’ expanding in the initially static medium
at a velocity dRcool/dt, as gas at increasingly larger radii starts
cooling and joins the cooling flow. For a constant initial temperature
with sound speed cs, hydrostatic equilibrium gives ρ ∝ r−α with
α = γ v2

c /c
2
s . The cooling time thus scales as tcool ∝ rα (equation 5),

and the cooling radius as Rcool ∝ t1/α . Equation (24) hence yields

ṀB89(t) ∝ t3/α−2, (25)

where the constant of proportionality is determined by the normal-
ization of the initial density profile. We choose an initial density
profile6 with α = 0.5 (i.e. an initial sound speed of cs = 2γ v2

c and
initial temperature of 1.5 × 106 K) and a hydrogen particle density
nH = 10−4.5 cm−3 at r = 100 kpc. We emphasize that this choice
of initial conditions is intended to yield a desired Ṁ(t) rather than
to describe a realistic halo. We also impose in the initial conditions
small isobaric density perturbations with an amplitude 〈δρ/ρ〉rms =
0.03 and a white-noise spectrum.

The top panel of Fig. 4 plots Ṁ(t) in the main simulation, which
scales roughly as Ṁ ∼ t4 as expected from equation (25). The
plotted Ṁ(t) is measured just beyond Rcirc at r = 20 kpc, though
our results do not depend on the exact choice of radius since at a
given snapshot Ṁ varies by less than 30 per cent in the range Rcirc <

r < Rcool/3 (Rcool is plotted in the second panel). At t = 11 Gyr, the
inflow rate exceeds Ṁcrit = 5.1 M� yr−1, where Ṁcrit is calculated
via equation (8). The lower four panels of Fig. 4 plot shell-averaged
properties in the simulation as a function of of r and t. From top
to bottom the panels show the mass-weighted averages of log T,
logM, and log K/K(r = 200 kpc), and the density dispersion
〈δρ/ρ〉rms. The figure shows that at early times t � 2 Gyr the value
of Rcool is smaller than Rcirc and the gas properties remain near

6In a general hydrostatic profile the density slope α is a free parameter. In
contrast, steady-state cooling flows in an isothermal potential have a specific
density slope of nH ∝ r−1.5 (equation 17).
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Figure 4. Hydrodynamic 3D simulation of radiatively cooling gas in an isothermal potential with vc = 100 km s−1. Third-solar metallicity is assumed
throughout. The gas is initialized at t = 0 with a hydrostatic pressure profile, and a density profile chosen to produce the dependence of inflow rate on time
shown in the top panel. Initial conditions also include a uniform specific angular momentum corresponding to Rcirc = 10 kpc, and density fluctations with
amplitude 〈δρ/ρ〉rms = 0.03. The three middle panels plot mass-weighted shell averages of temperature, Mach number, and entropy, as a function of radius
and time. Entropy is normalized by the value at 200 kpc at each time. The bottom panel plots the density dispersion in the shells. The critical inflow rate Ṁcrit

and cooling radius Rcool are noted in the top two panels. At 3 Gyr � t � 7 Gyr when Rcool > Rcirc and Ṁ 
 Ṁcrit the halo gas forms a subsonic cooling flow
corresponding to hot-mode accretion – the inward flow remains hot down to Rcirc. At t > 10 Gyr when Ṁ > Ṁcrit the halo gas forms a transonic flow, with hot
subsonic gas overlying cool supersonic gas. Density perturbations develop significantly only in supersonic regions or at r � Rcirc.

the initial conditions. At later times 3 � t � 10 Gyr when Rcool >

Rcirc and Ṁ < Ṁcrit, the gas within Rcool forms a subsonic cooling
flow in which the gas temperature is near virial and the entropy
declines inwards. Only very close to Rcirc = 10 kpc the flow cools
out, as suggested by the 1D solutions with Ṁ = 0.7 and 3 M� yr−1

in Fig. 2. Comparing snapshots in the simulation with a steady-
state solution with the same Ṁ as in the snapshot, we find that the
mass-weighted T, ρ, and v differ by a factor of less than two at Rcirc

< r < Rcool/3, and a factor of less than 1.5 at Rcirc < r < Rcool/5,
consistent with the result in Paper I that the flow converges on to the
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Figure 5. Similar to Fig. 4, spanning the entire simulation time. As Ṁ

increases the sonic radius moves outwards. At late times when Ṁ is
sufficiently large, cool gas falls freely throughout the halo, corresponding
to the classic ‘cold-mode accretion’.

steady-state solutions at r 
 Rcool, and specifically near Rcirc. Fig. 4
shows also that within Rcirc the flow is hot down to ≈ 3 kpc, and
comprises of inflow outside the mid-plane which overshoots Rcirc

and is then repelled back by the centrifugal force (see Fig. 7 below).
The lowest panel demonstrates that in this Ṁ < Ṁcrit regime the
amplitude of density fluctations is 
1 beyond Rcirc, as expected in
subsonic cooling flows (see Paper I and references therein).

Fig. 4 shows that at t > 10 Gyr when Ṁ exceeds Ṁcrit the
flow is transonic with a subsonic region ‘overlying’ a supersonic
region, as depicted in the middle panel of Fig. 3. The sonic point
is evident as the upper white contour in the M panel, and it
moves outwards as Ṁ increases in the simulation (see Fig. 5).
We measure Rsonic as the outermost shell with 〈logM〉 = 1, and
plot the relation between Rsonic and Ṁ(r = 20 kpc) in Fig. 6. When
Ṁ > Ṁcrit, the relation in the simulation is similar to the steady-
state, no-angular-momentum calculation (equation 20, blue line).
When Ṁ � Ṁcrit, i.e. at 7.5 Gyr � t � 10 Gyr, the simulation has a
sonic point somewhat within Rcirc, while when Ṁ 
 Ṁcrit the flow
in the simulation is entirely subsonic.

Towards the end of the simulation where Ṁ � 20Ṁcrit, Fig. 5
shows that the sonic radius exceeds 200 kpc, and the flow is
supersonic at all halo scales, i.e. the scenario depicted in the right-
hand panel of Fig. 3. We note that in our simulation the flow is
transonic even at these late times since there is hot quasi-static gas
out to the outer boundary at 10 Mpc, i.e. we effectively assume
the accretion shock is at infinity. In a realistic system with a finite
accretion shock radius we expect the flow to be purely supersonic
if Ṁ corresponds to Rsonic larger than the shock radius.

Figs 4 and 5 demonstrate that once the flow crosses the sonic
radius it cools quickly, as suggested by the steady-state solutions
shown in Fig. 1. This rapid cooling is associated with a rapid growth
of thermal instabilities (bottom panel in Fig. 4, see also Mathews &
Bregman 1978 and Balbus & Soker 1989). The association of the
sonic radius with the rapid growth of instabilities occurs since within
the sonic radius tcool 
 r/vr (see fig. 3 in Paper I), so the instabilities
grow faster than the rate at which the flow is advected inwards, in

Figure 6. The relation between Ṁ and Rsonic. Each dot or arrow corresponds
to a snapshot in the simulation shown in Figs 4–5, while down-pointing
arrows at 1 kpc denote snapshots where the flow is entirely subsonic. The
cyan line plots the analytic relation (equation 20). The simulation and
analytic calculations roughly agree when Rsonic > Rcirc and Ṁ > Ṁcrit.

contrast with the subsonic region where tcool ≈ r/vr (equation 18).
The supersonic flow reaches a radius which is substantially smaller
than Rcirc, and is evident as a boundary in all properties plotted in
Fig. 4. This minimum radius decreases with increasing Ṁ .

In Fig. 7, we plot streamlines and temperature maps in the
meridional plane, mass-weighted over the φ coordinate. The three
panels plot snapshots at t = 4 Gyr (top), t = 15 Gyr (middle), and
t = 30 Gyr (bottom), corresponding to the hot (Ṁ 
 Ṁcrit), tran-
sonic (Ṁ � Ṁcrit) and purely cold (Ṁ � Ṁcrit) accretion phases.
The panels are shaped as wedges similar to half the simulated
domain, between θ = π /2 (bottom axis) and θ = π /4 (top diagonal
axis). The streamlines emanate from large radii and are initially
evenly spaced in θ , indicating a radial inflow. In the hot accretion
mode plotted on top the streamlines converge on to r = Rcirc and θ =
π /2, i.e. on the equilibrium position for our assumed specific angular
momentum, which corresponds to a ‘ring’ in 3D space. Streamlines
initially far away from the mid-plane first overshoot Rcirc and reach
somewhat smaller radii, and then turn outwards as the centrifugal
force overcomes gravity. Note though that this latter effect may be
artificially enhanced by the boundary of our domain at θ = π /4 and
hence the lack of streamlines which feed gas and provide pressure
support at smaller radii. At the equilibrium position the gas is cool
(see also temperature panel of Fig. 4), though the flow cools out
just before joining the ring – the region with T � 105 K spans �3
grid cells in the θ direction and �9 grid cells in the r direction. In
the ring, our prescription for ‘star formation’ acts as a sink for gas
when the density exceeds 0.03 cm−3.

In contrast with the hot accretion mode, in the other two regimes
shown in the bottom panels of Fig. 7 the streamlines reach the
mid-plane at a radius of 4−5 kpc, substantially smaller than the
equilibrium position at r = Rcirc. This is possible due to the lack of
pressure support and high inertia of the flow, which allows a cool
flow to ‘overshoot’ the angular momentum barrier. In our simulation
the gas is lost to SF at these inner radii, which causes the flowlines
to end at a non-equilibrium position. In a similar simulation without
the SF prescription the flow circles back to the equilibrium position
after crossing the mid-plane at radii <Rcirc.
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Figure 7. Streamlines and temperature maps in the meridional plane. The
panels plot three snapshots of the simulation, corresponding to the hot
accretion mode (t = 4 Gyr, top), the transonic accretion mode (t = 15 Gyr,
middle), and the purely cold accretion mode (t = 30 Gyr, bottom). The
bottom axis of each panel corresponds to the mid-plane (θ = π /2) while the
top diagonal axis corresponds to the boundary of the simulated domain at θ =
π /4. The equilibrium position given the angular momentum of the simulated
gas is at r = Rcirc = 10 kpc and θ = π /2. In the hot accretion mode the radial
flow at large scales converges on to the equilibrium position, at which point
the gas cools and is removed from the simulation via our SF prescription.
In the other two accretion modes the flow reaches the mid-plane and is lost
to SF at radii smaller than the equilibrium position.

To summarize, the flow structure formed in the 3D simulation
suggests that the 1D steady-state cooling flow solutions capture the
transition between hot- and cold-mode accretion reasonably well, at
least in our idealized setup. If Ṁ < Ṁcrit then the flow ‘smoothly’
accretes on to the galaxy disc from a hot (≈Tvir) rotating atmosphere
with a vanishing radial velocity, as can be seen in the purple and
blue solutions in Fig. 2 and in the top panel of Fig. 7. In contrast, if
Ṁ > Ṁcrit then Rsonic > Rcirc and the gas reaches the galaxy scale
as a cool (≈Teq) supersonic flow, as can be seen in the green and
yellow solutions in Fig. 2 and in the two bottom panels of Fig. 7.

We note that our result where initially hydrostatic gas converges
on to a steady-state cooling flow solution at 
Rcool requires that
dRcool/dt < cs, i.e. the cooling wave expands slowly compared to
the sound-crossing time. This condition was also required by B89
in order to derive their self-similar cooling wave solutions. If this
condition is violated, gas at different radii cools out monolithically,
and the pressure profile does not have time to adjust to the cooling
flow solution. In this latter case the halo gas collapses into a
supersonic free-falling solution rather than forming a subsonic or
transonic cooling flow. In Appendix B, we show that this collapse
occurs in one of the simulations presented in Paper I.

2.4 Comparison to the condition for shock stability

The simulation in the previous section and the simulations in Paper I
demonstrate that halo gas which is initially hydrostatic converges on
to the family of cooling flow solutions (as long as dRcool/dt 
 cs, see
Appendix B and B89). A related question is under which conditions
a flow which is initially supersonic7 will shock and form a cooling
flow. Note that such a transition is non-trivial only if Rsonic of the
cooling flow that forms is smaller than the outer boundary of the
system (e.g. the two left-hand panels in Fig. 3), since otherwise the
cooling flow solution is also a supersonic solution (right-hand panel
in Fig. 3). This question was addressed by BD03, who argued that
supersonic inflows in dark matter haloes shock once the conditions
for an accretion shock to expand are met at the disc radius ≈Rcirc. In
this section, we show that the condition for an expanding accretion
shock at a shock radius Rsh = Rcirc is similar to the condition Rsonic

< Rcirc derived here for the onset of hot-mode accretion. We show
this similarity by utilizing the expectation that the post-shock gas
forms a cooling flow.8

The shock jump condition is

vsh = −1

3
(v0 − 4v1) , (26)

where vsh, v0, and v1 are the shock, pre-shock, and post-shock
velocities, all measured in the halo frame (inflows have a negative
velocity), and for simplicity we assume a strong shock. Note that
the post-shock velocity in the shock frame v1 − vsh must be
subsonic, so if v1 is supersonic vsh must be negative, i.e. the shock

7The family of supersonic solutions to equations (13)–(15) satisfies T ≈
Teq ≈ 104 K and vr roughly equal to the free-fall velocity. As ρ is essentially
unconstrained, one can find such a supersonic solution for any assumed value
of Ṁ .
8This expectation is not strictly valid since cooling flows are steady-state
solutions while gas immediately within the shock radius is likely not time-
steady (as is gas just within Rcool in the simulation discussed in Section 2.3).
The cooling flow solutions for the shocked gas are expected to be accurate
only out to radii smaller than the shock radius. We neglect this complication,
and in the next section support our conclusion on the similarity of the two
formalisms by comparing the values they yield for Mthres.
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is contracting. It hence follows that a necessary condition for an
expanding accretion shock is M(Rsh) < 1, or equivalently in a
cooling flow Rsonic < Rsh. To show that the Rsonic < Rsh condition is
likely to be also a sufficient condition for an expanding shock, we
replace v1 with −Rsh/tcool (equation 18):

vsh = −1

3

(
v0 + 4

Rsh

tcool

)
. (27)

Using the definition of tff (equation 4) and extracting v0 from the
parentheses we get

vsh = −v0

3

(
1 − tff/tcool

|v0|/(
√

8vc)

)
, (28)

where all quantities are estimated at Rsh. Approximating the in-
flow velocity as |v0| ≈ vc(1 + √

2 ln(Rvir/Rsh)), as expected for
an inflow ‘dropped’ from 2Rvir in an NFW potential, we get
|v0|/

√
8vc = 1.2 for Rsh = 0.05Rvir. Equation (28) thus implies

that if tff/tcool � 1.2 at the shock radius, then the term in the brackets
is positive and the shock expands outwards. Since tff/tcool ≈ 1.5M
(equation 21), we get that if M(Rcirc) � 0.8 then vsh > 0, i.e. if the
condition Rsonic � Rcirc is satisfied the shock would expand.

The above derivation suggests that the BD03 condition for shock
stability at Rcirc is similar to the condition for hot-mode accretion
Rsonic � Rcirc derived in this work. It is important to note though that
our derivation does not assume an accretion shock exists, in contrast
with the derivation of BD03. Rather, our derivation is based solely
on the properties of radiatively cooling gas with T ≈ Tvir, regardless
of whether the gas was heated to this temperature in a single shock,
in a series of shocks, or by feedback at earlier epochs. Our analysis
thus suggests that the conditions under which hot-mode accretion
is possible apply more generally.

In the simulations in BD03 the halo mass grows with time, so
Ṁ/Ṁcrit decreases since Ṁcrit increases faster than Ṁ (see next
section). The initially supersonic flows in BD03 though shock
directly into subsonic flows, without going through an intermediate
transonic cooling flow phase. We have verified this behaviour using
a setup similar to that in the previous section but with supersonic
initial conditions. We set the outer boundary condition so Ṁ

decreases with time from an initial Ṁ � Ṁcrit, and indeed a shock
and subsonic cooling flow form only when Ṁ � Ṁcrit, while when
Ṁ � Ṁcrit the flow remains purely supersonic rather than forming
a transonic flow. A possible limitation of this simulation and the
simulation in BD03 is the lack of sufficiently strong shocks beyond
Rcirc. If the flow shocks in the supersonic part of the flow the shock
cannot propagate outwards, and hence the subsonic part of the
cooling flow will not form. However, in the presence of outflows
from the galaxy the inflows from the IGM are expected to experience
strong shocks at radii �Rcirc (e.g. Fielding et al. 2017), and thus
supersonic flows may shock directly into transonic cooling flows.
We leave exploring this possibility to future work.

2.5 The condition for cooling-regulated accretion

White & Frenk (1991) argued that the condition

tcool(Rvir) = tH (29)

separates between ‘cooling-limited’ systems in which accretion
is regulated by radiative cooling, and ‘supply-limited’ systems in
which accretion is regulated by the inflow rate from the IGM. We
now show that equation (29) is similar to the condition tcool =
tff at Rcirc derived above for the onset of hot-mode accretion. This
similarity follows since in cooling flows tcool/tff ∝ r1/2 (equation 21),

so in the critical solution tcool/tff ∝ (r/Rcirc)1/2 and hence

tcool(Rvir, Ṁ = Ṁcrit) ≈
√

Rvir

Rcirc
tff (Rvir) ≈ tH, (30)

where the last approximation follows from Rvir/Rcirc ≈ 20 and tH

≈ 5tff(Rvir).9 Thus, systems with Ṁ < Ṁcrit are cooling-limited
according to the condition (29), while systems with Ṁ > Ṁcrit are
‘supply-limited’, even if the halo gas has shocked and forms a
transonic cooling flow.

We note in passing that semi-analytic models such as Somerville
& Primack (1999) which employ the condition (29) could be
improved by considering the halo gas density profile ρ ∝ r−1.5

suggested by the physical cooling flow solution (equation 17), rather
than say an isothermal profile with ρ ∝ r−2.

3 TH E C R I T I C A L C O O L I N G R ATE A S A
F U N C T I O N O F H A L O A N D G A S PA R A M E T E R S

We now use equation (8) to evaluate Ṁcrit as a function of halo
parameters. We use the following virial relations:

Rvir = vc√
�c(z)

2 H (z)
= 263 M

1/3
12 E−2/3(z) kpc (31)

vvir =
(√

�c

2
HGMhalo

)1/3

= 128 M
1/3
12 E1/3(z) km s−1, (32)

where Mhalo ≡ 1012M12 M�, �c is the virial overdensity with
respect to the critical density from Bryan & Norman (1998),
H(z) is the Hubble parameter at redshift z, and we absorbed the
redshift-dependent term

√
�c(z)H (z)/

√
�c(0)H0 into a function

E(z), which is equal to

E(z) =
√

�c(z)

102

[
1 − �m,0 + �m,0(1 + z)3

] ≈ (1 + z)0.9, (33)

where the approximation is accurate to 25 per cent at 0 < z < 10.
The critical accretion rate is then derived using equations (31), (32),
and (9) in equation (8):

Ṁcrit = 21/6 × 4πG5/3m2
p

X2
f 3

vc
fλλ�1/3

c H 2/3M
5/3
halo�

−1

= 10.6 f 3
vc

fλλ0.035�
−1
−22M

5/3
12 E2/3(z) M� yr−1, (34)

where we defined

fvc ≡ vc(Rcirc)

vvir
, (35)

which depends both on the halo concentration and on the properties
of the galaxy. In the numerical evaluation in equation (34) we used X
= 0.7, and defined � ≡ 10−22�−22 erg cm3 s−1 and λ ≡ 0.035λ0.035.
The value of λ is normalized to the mean value found in the Bolshoi–
Planck simulation in haloes with mass 1010 < Mhalo < 1015 M� and
redshift 0 < z < 8 (Rodrı́guez-Puebla et al. 2016).

We now describe how we estimate � and fvc in equation (34). For
� we use the tables of Wiersma et al. (2009), which depend on T,
Z, z, and nH. The value of T is calculated from ε = v2

c (equation 16)
which gives

kT = 2

3
μmpv

2
c = 4

3
f 2

vc
kTvir. (36)

9The relation tH = 5tff(Rvir) can be derived from tff (Rvir) = √
2Rvir/vvir ≈√

2/(10H ) and tH = 2/(3H), where H is the Hubble parameter.
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For Z we use as a fiducial estimate the metallicity of gas in the
central galaxy, since at Rcirc which is roughly the size of the
galaxy (e.g. Kravtsov 2013; Shibuya et al. 2015) significant mixing
of the hot gas and ISM is likely. We calculate this metallicity
estimate based on the observed z = 0 mass–metallicity relation
from Andrews & Martini (2013):

ZMZR(Mhalo, z = 0)

Z�
= 1.28

1 +
(

M∗(Mhalo,z=0)
108.901 M�

)−0.64 , (37)

where we converted [O/H] in Andrews & Martini (2013) to
ZMZR/ Z� assuming 12 + [O/H]� = 8.69 (Asplund et al. 2009), and
we use the stellar-mass–halo-mass relation (SMHM) from Behroozi
et al. (2019, hereafter B19) to convert between Mhalo and stellar-
mass M∗. The dependence of � on nH and z is due to heating and
ionization by the UV background (UVB) and cooling off the cosmic
microwave background, where only the UVB effect is significant in
the halo masses of interest. To calculate nH we solve equation (6)
for nH, max including the dependence of � on nH, and then rederive
Ṁcrit accordingly. To gauge the importance of the UVB on Ṁcrit we
also calculate � assuming no UVB (i.e. in the nH → ∞ limit), using
the collisional-ionization equilibrium cooling tables from Gnat &
Sternberg (2007).

To estimate fvc we assume an NFW profile for the dark matter and
an exponential disc for the galaxy. NFW concentration parameters
are calculated using the fitting formulas of Klypin et al. (2016),
which are based on the Bolshoi–Planck dark matter simulation.10

For the galaxy mass we use the SMHM from B19, as used above to
estimate the gas metallicity. The half-mass radius R1/2 is taken from
Kravtsov (2013):

R1/2 = 0.015R200c ≈ 0.012Rvir, (38)

where R200c is the radius enclosing an overdensity of 200 relative
to the critical density. Since fvc depends on the mass enclosed
within Rcirc ≈ 0.05Rvir, this size estimate is practically equivalent
to assuming the galaxy is a point source, so any R1/2 up to a factor
of ≈2 above the estimate in equation (38) yields similar results. We
then sum the galaxy mass profile with the NFW profile normalized
by 1 − M∗/Mhalo, and solve equation (9) for Rcirc and fvc . For
1010−1013 M� haloes at z = 0, the value of fvc is typically larger
than unity, and Ṁcrit increases by a factor of up to two relative to
an isothermal calculation with fvc = 1. At higher redshifts 2 < z

< 6 the lower NFW concentration implies that fvc < 1, decreasing
Ṁcrit by up to a factor of four relative to an isothermal calculation.

For completeness, we also calculated a mass profile which
accounts for adiabatic contraction of the dark matter due to the
galaxy using the CONTRA package (Gnedin et al. 2004). We find
that this effect can only increase Ṁcrit, by a factor of at most two.
Observations and cosmological simulations though suggest that this
contraction may be negated by dark matter expansion induced by
clumpy gas accretion or feedback (Dutton et al. 2007; Macciò et al.
2012; Chan et al. 2015), so we do not consider it further.

In the top panel of Fig. 8, we plot the derived Ṁcrit for z = 0
haloes, with different assumptions on the calculation of � and fvc .
The thick curve is the fiducial model which assumes a metallicity
equal to ZMZR given by equation (37), heating by the UVB, and
includes the effect of the galaxy on fvc . The other curves differ from
this fiducial calculation as noted, either by assuming a metallicity

10Klypin et al. (2016) published concentration parameters of haloes up to z

= 5.4; we use the z = 5.4 values at higher redshifts.

Figure 8. The critical accretion rate (equation 34) versus halo, gas, and
galaxy parameters. (Top) Haloes at z = 0. The thick curve marks Ṁcrit for
a hot gas metallicity (at Rcirc ≈ 0.05Rvir) of ZMZR – the gas metallicity
in the central galaxy based on the observed mass–metallicity relation
(equation 37). Other curves assume either a different metallicity as noted, or
neglect heating by the UVB or the effect of the galaxy on the gravitational
potential. The dashed line marks the cosmic halo baryon budget divided by
the Hubble time. (Bottom) The dependence of ṀcrittH on redshift, assuming
no redshift evolution in the MZR. Heating by the UVB and the gravity of
the galaxy are included in the calculation. The dashed line marks the cosmic
halo baryon budget. The intersection of the solid lines with the dashed
lines gives the threshold halo mass for the onset of hot-mode accretion in
baryon-complete haloes.

equal to a third of the fiducial estimate, no metal contribution
to the cooling, no UVB heating, or no effect of the galaxy on
the potential. An increase in Ṁcrit with decreasing Z is apparent
at Mhalo > 1010.5 M�, at which Tvir > 105 K and the metals can
dominate the cooling. Heating by the UVB significantly affects
Ṁcrit only at Mhalo < 1010 M� at which the gas temperature is close
to the equilibrium temperature. When the gas temperature equals
the equilibrium temperature at Mhalo ≈ 109 M� then Ṁcrit goes to
infinity since � goes to zero. Below this threshold there is no net
cooling and the cooling flow solutions do not apply. Note also that
Wiersma et al. (2009) did not account for local ionization sources
in the galaxy (e.g. Cantalupo 2010), which may also decrease �

and increase Ṁcrit. Also evident in Fig. 8 is that the galaxy gravity
increases Ṁcrit due to the associated increase in the circular velocity
at Rcirc. The largest effect is at Mhalo = 2.5 × 1012 M� where the
SMHM peaks, in which Ṁcrit increases by a factor of 2.8. The
change in Ṁcrit due to the galaxy is smaller at lower and higher
Mhalo, and almost vanishes at Mhalo < 1011 M� due to the small
galaxy mass.

In the bottom panel of Fig. 8, we vary the redshift while keeping
λ and Z constant. The vertical axis in this panel is ṀcrittH where
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tH is the Hubble time. This product gives a characteristic mass
associated with accretion at a rate Ṁcrit, and also the gas mass
associated with accretion at a rate Ṁcrit (see below). Note that with
increasing redshift the virial temperature increases for a given halo
mass (equation 36), causing the maximum in � and hence minimum
in Ṁcrit to shift towards lower masses. At halo masses above the
minima in Ṁcrit the value of ṀcrittH depends relatively weakly
on redshift. This independence follows since at high Mhalo metals
dominate the cooling and hence Ṁcrit ∝ v5.4

c Rcirc (equation 12).
Since vc ∼ vvir∝(1 + z)1/3 and Rcirc ∝ Rvir∝(1 + z)−2/3 we get that
ṀcrittH ∝ (1 + z)0.13, i.e. ṀcrittH is roughly independent of redshift
if the metallicity is held constant. The offset of ṀcrittH at high
Mhalo and z = 0 relative to at z ≥ 2 is mainly due to the higher
concentration of z = 0 haloes, and hence a higher fvc as mentioned
above.

The product ṀcrittH provides a rough estimate of the halo gas
mass Mgas in the critical solution. This follows since in an inflow
solution the gas mass equals Ṁ times the crossing time r/|vr|,
which in a cooling flow equals the cooling time at the virial radius
(equation 18). In the critical solution tcool(Rvir) ≈ tH (equation 30),
so we get that Mgas ≈ ṀcrittH. Thus, at halo masses where ṀcrittH
is smaller than the cosmic halo baryon budget fbMhalo (below the
dashed lines in Fig. 8) the critical solution requires the halo to
be baryon-depleted, while a baryon-complete halo would have
Ṁ > Ṁcrit and hence be either transonic or entirely supersonic.
At halo masses where ṀcrittH > fbMhalo (above the dashed lines)
we expect Ṁ < Ṁcrit even in baryon-complete haloes and hence the
halo gas is expected to be purely subsonic. The intersection of the
ṀcrittH and fbMhalo curves therefore gives the classic threshold halo
mass Mthres for the onset of hot-mode accretion in baryon-complete
haloes.

The implied Mthres derived by equating the gas mass in the critical
solution ṀcrittH and a gas mass equal to fCGMfbMhalo are plotted in
Fig. 9. The thick curve assumes baryon-complete haloes (fCGM = 1),
the fiducial gas spin parameter fλλ = 0.035, and a hot gas metallicity
given by equation (37), i.e. equal to the metallicity of the central
galaxy assuming no evolution in the mass–metallicity relation with
redshift. The threshold halo mass under these assumptions is in the
range Mthres ≈ 0.9−2 × 1012 M� at all plotted redshifts. If the hot
gas metallicity is a third of this fiducial value Mthres decreases by a
factor of five at z = 0 and by a smaller factor of two at z = 2. A
similar change in Mthres is evident if the hot gas mass is a third of
the halo cosmic baryon budget or if the angular momentum of the
CGM is larger by a factor of two than the fiducial value. Without any
metal cooling Mthres decreases to 0.7−2 × 1011 M�. Assuming fCGM

= 0.1 implies that at z < 0.8 hot-mode accretion is possible at all
halo masses. The top curve shows that disregarding the effect of the
average galaxy on the potential increases Mthres by a factor of two.
Fig. 9 thus demonstrates that Mthres can vary significantly according
to the gas and galaxy parameters, especially at low redshift.

The derived Mthres is similar to that found by Dekel & Birnboim
(2006) for the same assumed parameters, i.e. for z = 0, Z = Z�,
and a shock radius ≈0.1Rvir Dekel & Birnboim derived Mthres =
2.5 × 1012 M� (see their fig. 4), similar to Mthres = 2 × 1012 M�
implied by the ‘no galaxy’ calculation at z = 0 in Fig. 9. The
weak dependence of Mthres on redshift in our fiducial parameters is
also consistent with their and previous conclusions. Our analysis
however emphasizes that physical conditions at Rcirc ≈ 0.05Rvir can
significantly change Mthres. The enrichment and depletion of galaxy
outskirts by outflows will, respectively, increase and decrease Mthres.
Also, the effect of the galaxy on the gravitational potential decreases
Mthres, with a larger decrease for galaxies which are more massive

Figure 9. The threshold halo mass for hot-mode accretion versus redshift,
derived by equating the gas mass in the critical solution ṀcrittH with a halo
gas mass of fCGMfbMhalo. The thick curve marks Mthres for a baryon-complete
halo (fCGM = 1), the fiducial gas spin parameter (fλλ = 0.035), and a hot
gas metallicity of ZMZR(z = 0) – the gas metallicity in the central galaxy
based on the observed mass–metallicity relation at z = 0 (equation 37).
Other curves assume either a different metallicity, a different gas spin, or
different fCGM as noted. The curve marked ‘no galaxy’ neglects the effect
of the galaxy on the gravitational potential in the calculation of Ṁcrit.

relative to their halo. Furthermore, our analysis suggests that Mthres

separates between haloes in which the gas is purely subsonic and
haloes in which the gas is transonic, in contrast with the conclusion
of Dekel & Birnboim (2006) that Mthres separates between purely
subsonic and purely supersonic haloes (see further discussion
below).

4 C O M PA R I S O N O F TH E C R I T I C A L
AC C R E T I O N R ATE W I T H T H E STA R
F O R M AT I O N R ATE

In Fig. 10, we compare Ṁcrit in z = 0 dark matter haloes (thick
black line) with the average SFR (grey stripe). The value of Ṁcrit is
calculated from equation (34) using our fiducial parameters: fλλ =
0.035, fvc calculated from an NFW + galaxy profile with M∗(Mhalo)
from B19, and the ISM metallicity corresponding to the same M∗
(equation 37). The thin grey lines plot Ṁcrit assuming the metallicity
is a factor of two lower (top curve) or higher (lower curve) than
this fiducial estimate. The background colours emphasize the two
regimes for how the volume-filling phase accretes on to the galaxy,
gradual accretion of hot gas if Ṁ < Ṁcrit and free-fall if Ṁ > Ṁcrit.
The average SFR is also taken from B19, and is equal to the time
derivative of the SMHM. We plot their mean SFRs for central
galaxies (i.e. excluding satellites), and use the width of the grey
stripe to denote the statistical uncertainty in the B19 model fits. The
figure demonstrates that the average SFR derived by B19 is less than
or comparable to Ṁcrit at any halo mass. As Ṁcrit is the maximum
possible accretion rate of the hot mode, this result suggests that
hot-mode accretion can in principle dominate the gas supply for
star formation in low-mass haloes.
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Figure 10. Comparison of the critical cooling rate with the mean SFR at z

= 0.1. The thick solid line plots Ṁcrit (equation 34), assuming Z = ZMZR

and fλλ = 0.035. The thin grey lines plot Ṁcrit for a factor of two lower or
higher Z. For Ṁ < Ṁcrit we expect the volume-filling phase to be pressure-
supported down to the galaxy scale (hot accretion mode, red background),
while for Ṁ > Ṁcrit we expect the gas to reach the galaxy with supersonic
velocities (cold or transonic accretion modes, blue background). The mean
SFR for central galaxies derived by B19 is indicated by a grey stripe, where
the stripe width marks the uncertainty in their model fit. The mean SFR is
comparable to or lower than Ṁcrit at all halo masses.

To extend the comparison of Ṁcrit with the SFR to high red-
shift, we assume fλλ = 0.035 at all redshifts, motivated by the
constant median λ = 0.035 found in the Bolshoi–Planck simulation
(Rodrı́guez-Puebla et al. 2016). The metallicity at high redshift is a
major uncertainty. As a fiducial model for the metallicity evolution
we utilize the scaling suggested by Dekel & Birnboim (2006) based
on semi-analytic models:

Z(M∗, z) = 10−szZ(M∗, z = 0) (39)

with an enrichment rate s = 0.17. This enrichment rate is consistent
with the factor of two lower normalization of the mass–metallicity
relation at z ≈ 2 relative to its local value (Erb et al. 2006; Sanders
et al. 2015), and is similar to s = 0.22 ± 0.03 deduced for damped
Ly α absorbers (DLAs) at 0 < z < 5 by Rafelski et al. (2012).11The
value of Z(M∗, z = 0) in equation (39) is calculated as above using
equation (37) for the mass–metallicity relation in the local Universe,
and using the B19 SMHM to derive M∗ from Mhalo and z. The same
M∗ is also used for the calculation of fvc , and we assume all the
galaxy mass is within Rcirc = 0.05Rvir. This latter assumption is
consistent with the R1/2 ≈ 0.02Rvir found at z = 0–8 by Shibuya
et al. (2015).

11The trend of DLA metallicity versus redshift found by Rafelski et al.
(2012) does not account for the possible trend of M∗ with z in their sample,
so their quoted value potentially overestimates s as defined in equation (39).

The solid lines in Fig. 11 plot the implied Ṁcrit using these
parameters. Each panel corresponds to a different redshift as noted
at the top of the panels. We normalize the vertical axes in this plot
by fbMhalo/tH in order to decrease the dynamical range, so in this
plot the Ṁcrit curve denotes the required depletion for the onset of
hot-mode accretion (see Section 3), while the SFR stripes roughly
track the ratio of stellar mass to halo baryon budget (since SFR ×
tH/fbMhalo ∼ M∗/fbMhalo). To bracket the range of Ṁcrit implied by
the uncertainty in metallicity we also plot Ṁcrit assuming the local
mass–metallicity relation holds at higher redshift (i.e. s = 0), and
Ṁcrit assuming no contribution of metals to the cooling (marked as
Z = 0 Z�, though in practice any Z � 0.01 Z� gives identical re-
sults). Fig. 11 demonstrates that for the metallicity evolution rate in
equation (39), SFR � Ṁcrit at all plotted halo masses and redshifts.
The hot-mode accretion can thus in principle dominate the gas
supply for star formation also in low-mass haloes at high redshift.

5 D I S C U S S I O N A N D C O N C L U S I O N S

The physical properties of the volume-filling gas phase in dark
matter haloes are crucial both for understanding the nature of galaxy
accretion and for understanding the consequences of feedback
(e.g. White & Rees 1978; White & Frenk 1991; BD03; Dekel
& Birnboim 2006; Fielding et al. 2017). In this paper, we revisit
the question of whether this gas phase is predominantly hot and
pressure-supported or predominantly cool and free-falling. We limit
the effect of feedback in our analysis to the possible enrichment
and depletion of the halo gas. Absent dynamical effects of feedback
(e.g. heating), hot pressure-supported gas in haloes forms a cooling
flow. We demonstrate that the family of cooling flow solutions
separates the physical states of the halo gas into three regimes,
according to whether the cooling flow sonic radius Rsonic is on the
scale of the galaxy, on the scale of the halo, or beyond the halo
(Fig. 3). The first regime corresponds to the classic hot accretion
mode where the flow is subsonic (i.e. pressure supported) and
smooth from the accretion shock down to the galaxy scale. The
third regime corresponds to the classic cold accretion regime where
clumpy gas falls in supersonically from the IGM down to the galaxy
without experiencing a strong shock. In the second intermediate
regime the gas forms a hot inflow over some range of radii, and then
cools out at Rsonic and free-falls on to the galaxy. This ‘transonic’
regime resembles the classic cold mode in terms of the properties
of gas when it accretes on to the galaxy, since the gas reaches the
galaxy scale as a cold and free-falling flow (Fig. 7). However, in
terms of coupling with feedback this intermediate scenario may
in some aspects more closely resemble the hot mode, due to the
existence of a layer of hot and homogeneous pressure-supported
gas situated beyond the cold and clumpy free-falling flow. This
will presumably depend on where in the halo relative to Rsonic the
feedback energy is deposited.

In the simulation shown in Figs 4–5 the intermediate transonic
scenario for the halo gas develops from hydrostatic initial condi-
tions, when the mass inflow rate crosses the critical value of Ṁcrit.
It is less clear if this scenario can be realized if the gas inflow is
supersonic at large radii as is often the case in the cosmological
context. Indeed, a sonic transition at intermediate radii in the halo is
not seen in the idealized simulations of Birnboim & Dekel (2003)
where the halo gas is initially inflowing supersonically. We argued
in Section 2.4 that this difference could be due to the lack of a
source of strong shocks in the outer halo in the Birnboim & Dekel
simulations. It would thus be interesting to check whether this
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Figure 11. Comparison of the critical cooling rate with the mean SFR at different redshifts. To decrease the dynamical range, we normalize the vertical axis
by fbMhalo/tH. The solid black line plots Ṁcrit assuming the redshift evolution of the metallicity from Dekel & Birnboim (2006) given in equation (39). The
blue and red backgrounds mark, respectively, hot and cold/transonic accretion modes for the volume-filling phase, for this calculation of Ṁcrit. The two other
black lines bracket the uncertainty in Ṁcrit due to the uncertain metallicity. The thick dashed lines plot Ṁcrit assuming no metal contribution to the cooling,
while the dash–dotted lines assume no redshift evolution in the metallicity. The grey bands mark the mean SFR of central galaxies from B19. For the fiducial
metallicity model SFR � Ṁcrit at all plotted halo masses and redshifts.
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intermediate regime materializes in setups which include outflows
that shock against supersonic inflows at large scales (e.g. Fielding
et al. 2017) and in the more realistic conditions in cosmological
simulations. The latter can include strong feedback at high redshift
that ‘pre-heats’ the gas, stifling later supersonic inflows and more
closely resembling the hydrostatic initial conditions used in this
work (e.g. Figs 4–5). We leave addressing this question and deriving
the implications of this possible new accretion regime of halo gas
to future work.

We demonstrate that hot-mode accretion is possible only if Rsonic

< Rcirc ≈ 0.05Rvir, because this condition determines when the
gas is virialized and roughly hydrostatic down to galaxy scales.
This condition on Rsonic is equivalent to the condition tcool � tff at
r = Rcirc (equation 21), and can be cast as a maximum accretion
rate in the hot mode Ṁcrit (equations 8, 12). We emphasize that
‘hot’ corresponds to the virial temperature, which is relatively low
for low-mass haloes. We explore the dependence of Ṁcrit on halo
mass, redshift, and gas metallicity in Fig. 8. We find that in haloes
where metals dominate the cooling the product ṀcrittH is roughly
independent of redshift if the metallicity is held constant (Fig. 8).

The classic threshold halo mass for the onset of hot-mode
accretion Mthres can be derived by noting that the halo gas mass
for accretion at a rate Ṁcrit is ≈ ṀcrittH (Section 3). Since in cooling
flows the accretion rate increases with gas mass and density (Fig. 1),
hot-mode accretion is expected when the halo gas mass is � ṀcrittH.
For baryon-complete haloes Mthres can thus be derived from the
condition Ṁcrit = fbMhalo/tH. Assuming haloes are indeed baryon
complete, we find Mthres ∼ 1012 M� roughly independent of redshift
if the metallicity is held constant (Fig. 9). This result is comparable
to the calculations of BD03 for the formation of a stable accretion
shock near Rcirc for the same parameters. As our derivation does not
assume the gas was heated to ∼Tvir in a single shock, our results
suggest that the condition for hot-mode accretion derived by BD03
apply more generally. We also show that when accounting for the
gravitational effects of the average galaxy, Mthres decreases by a
factor of ≈2 (Fig. 9). This demonstrates that the existence of hot-
mode accretion depends not only on the properties of the halo but
also on the properties of the galaxy. Moreover, we showed that if
the halo gas mass is depleted relative to its baryon budget such that
the cooling and accretion rates are smaller than Ṁcrit, then hot-mode
accretion would be relevant also in haloes with Mhalo < Mthres.

The conclusion that hot-mode accretion is determined by con-
ditions at the galaxy scale implies that the relevant metallicity
for calculating Ṁcrit is the metallicity of the hot gas just outside
the galaxy, which is potentially higher than at larger scales due to
more intense enrichment by outflows. Also, while our calculations
neglect possible deviations from spherical symmetry induced by
cosmological filaments, we expect these to affect our results
regarding the nature of accretion from the volume-filling phase
only if filaments retain their identity down to the galaxy scale.
Cosmological simulations currently differ on whether this is indeed
the case, or whether instead the filaments dissolve farther out in the
halo (e.g. Kereš et al. 2005; Ceverino, Dekel & Bournaud 2010;
Faucher-Giguère et al. 2011; Nelson et al. 2013; Danovich et al.
2015, see also Mandelker et al. 2016, 2019; Padnos et al. 2018).

Our analysis assumes steady-state conditions, while various phys-
ical processes associated with galaxy formation, such as the growth
of the background potential, bursty stellar feedback (e.g. Muratov
et al. 2015), and clumpy accretion, could drive the system away
from steady state. An interesting question is thus what are the
relevant timescales on which steady state can be achieved? Our
results suggest that the relevant timescale for determining the nature

of accretion is the dynamical time of the galaxy. The importance of
this timescale emerges from the critical solution, in which tcool ≈ tff

at r ≈ Rcirc. Since in any cooling flow solution tcool ≈ tflow ≡ r/|vr|
(equation 18), the critical solution satisfies

tcool(Rcirc) ≈ tflow(Rcirc) ≈ tff (Rcirc) = 2fλλRvir

vc
, (40)

where the last equality follows from equations (4) and (9). Note
that this relation differs from the predictions of several feedback-
regulation models in which tcool in the halo is regulated to some
factor of tff (e.g. Sharma et al. 2012; Voit et al. 2017), since in these
models tflow � tcool due to heating by feedback, in contrast with tflow

≈ tcool in the cooling flow solution. Equation (40) implies that the
relevant timescales for the onset of hot-mode accretion are a factor
of (

√
2fλλ)−1 ∼ 20 shorter than the halo dynamical time, or a factor

of ∼100 shorter than the Hubble time at the corresponding redshift.
We thus expect our results to be roughly valid as long as other
processes change the relevant physical conditions on timescales
longer than this characteristic value. Moreover, the fact that this
timescale is relatively short implies that the nature of accretion can
be determined by transient processes, if the transient conditions
last longer than the galaxy dynamical time. For example, if a burst
of feedback depletes gas in the galaxy vicinity such that Ṁ drops
below Ṁcrit, then the remaining gas may accrete in the hot mode
even if the accretion rate averaged over longer timescales is larger
than Ṁcrit.

Figs 10 and 11 plot the average SFR in dark matter haloes
empirically derived by Behroozi et al. (2019) based on predictions
from dark-matter-only simulations and observational constraints.
These figures show that the average SFR is lower than Ṁcrit at
almost all halo masses and redshifts, for the fiducial metallicity
evolution discussed in Section 4. It is unclear if this result is a
coincidence, or indicates a physical connection between Ṁcrit and
the SFR in low-mass haloes. However, we have shown that hot-
mode accretion and Ṁcrit may be relevant also to low-mass haloes if
they are sufficiently depleted of baryons. It would thus be valuable
to explore scenarios in which Ṁcrit provides a physical upper limit
to the SFR in all haloes at all times. How could this be the case?
Due to the different nature of accretion and different consequences
of feedback according to the state of the halo gas, it is plausible
that the star formation efficiency SFR/Ṁ during the hot accretion
phase differs significantly from the SF efficiency during the phase
where gas reaches the galaxy in free-fall. In a low-mass halo where
gas accretes on to the galaxy via the hot mode for some fraction of
the time, and the SF efficiency during this hot mode phase is high
while it is low in the free-fall phase due to strong winds, the SFR
would tend to be � Ṁcrit, since during the hot phase Ṁ � Ṁcrit.
Simulations of low-mass haloes which include star formation and
feedback could test if such a scenario is realized.

Last, since Ṁcrit is determined by physical properties at the galaxy
scale it can be estimated from observations of galaxy properties,
and then compared to the SFR (or other properties) of individual
galaxies. This is in contrast with the statistical modelling required to
derive average SFR and Ṁcrit in dark matter haloes using techniques
such as abundance matching (as in Section 4 above). It would be
interesting to derive the relation between SFR and Ṁcrit on a galaxy-
by-galaxy basis and for different galaxy subtypes. This may provide
new insights into the importance of the hot accretion mode for
fuelling and/or quenching star formation, as well as the origin of
galaxy scaling relations involving parameters determining Ṁcrit,
such as the Tully & Fisher (1977) relation between vc and stellar
mass.
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Klypin A., Yepes G., Gottlöber S., Prada F., Heß S., 2016, MNRAS, 457,

4340
Kravtsov A. V., 2013, ApJ, 764, L31
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A P P E N D I X A : TH E B E R N O U L L I PA R A M E T E R
I N THE PRESENCE OF RADI ATI VE LOSS ES

When accounting for radiative losses, energy conservation can be
stated as

dε

dt
= −P dρ−1

dt
− q = P

ρ

d ln ρ

dt
− q, (A1)

where ε and q are the specific thermal energy and specific luminos-
ity, and the other variables have their usual meaning. For a spherical
steady-state flow d/dt = vrd/dr so we get

vr

(
dε

dr
− P

ρ

d ln ρ

dr

)
= −q. (A2)

Using dln ρ = dln P − dln ε and P/ρ = (γ − 1)ε then gives

vr

(
γ

dε

dr
− 1

ρ

dP

dr

)
= −q. (A3)

Using the momentum equation (14) we then arrive at equation (1):

vr

d

dr

(
1

2
v2

r + γ ε + �

)
= −q. (A4)

MNRAS 492, 6042–6058 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/492/4/6042/5716690 by Sim
ons Foundation user on 11 January 2021

http://dx.doi.org/10.1088/0004-637X/765/2/140
http://dx.doi.org/10.1146/annurev.astro.46.060407.145222
http://dx.doi.org/10.1086/167521
http://dx.doi.org/10.1088/0004-637X/770/1/57
http://dx.doi.org/10.1093/mnras/stz1182
http://dx.doi.org/10.1086/167428
http://dx.doi.org/10.1046/j.1365-8711.2003.06955.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12074.x
http://dx.doi.org/10.1088/0004-637X/694/1/396
http://dx.doi.org/10.1086/305262
http://dx.doi.org/10.1086/321477
http://dx.doi.org/10.1111/j.1745-3933.2010.00806.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16433.x
http://dx.doi.org/10.1093/mnras/stv2165
http://dx.doi.org/10.1093/mnras/stx1164
http://dx.doi.org/10.1093/mnras/stx2332
http://dx.doi.org/10.1093/mnras/191.2.399
http://dx.doi.org/10.1093/mnras/stv270
http://dx.doi.org/10.1093/mnras/stz635
http://dx.doi.org/10.1111/j.1365-2966.2006.10145.x
http://dx.doi.org/10.1086/509314
http://dx.doi.org/10.1086/503623
http://dx.doi.org/10.1038/310733a0
http://dx.doi.org/10.1111/j.1365-2966.2011.19457.x
http://dx.doi.org/10.1093/mnras/stw3326
http://dx.doi.org/10.1086/509786
http://dx.doi.org/10.1086/424914
http://dx.doi.org/10.1088/0004-637X/746/2/125
http://dx.doi.org/10.1093/mnras/stz1773
http://arxiv.org/abs/1701.09062
http://dx.doi.org/10.1093/mnras/sty1690
http://dx.doi.org/10.1111/j.1365-2966.2005.09451.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14541.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21548.x
http://dx.doi.org/10.1093/mnras/stw248
http://dx.doi.org/10.1088/2041-8205/764/2/L31
http://dx.doi.org/10.1088/2041-8205/744/1/L9
http://dx.doi.org/10.1093/mnras/stw2267
http://dx.doi.org/10.1093/mnras/stz012
http://dx.doi.org/10.1086/156379
http://dx.doi.org/10.1088/0004-637X/710/2/903
http://dx.doi.org/10.1093/mnras/sty655
http://dx.doi.org/10.1093/mnras/stv2126
http://dx.doi.org/10.1086/304888
http://dx.doi.org/10.1093/mnras/sts595
http://dx.doi.org/10.1093/mnras/sty656
http://dx.doi.org/10.1111/j.1365-2966.2008.13763.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16872.x
http://dx.doi.org/ 10.1093/mnras/stz3124
http://dx.doi.org/10.1093/mnras/sty789
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1086/308171
http://dx.doi.org/10.1088/0004-637X/755/2/89
http://dx.doi.org/10.1093/mnras/179.4.541
http://dx.doi.org/10.1093/mnras/stw1705
http://dx.doi.org/10.1088/0004-637X/799/2/138
http://dx.doi.org/10.1111/j.1365-2966.2012.22050.x
http://dx.doi.org/10.1088/0067-0049/219/2/15
http://dx.doi.org/10.1086/154972
http://dx.doi.org/10.1046/j.1365-8711.1999.03032.x
http://dx.doi.org/10.1093/mnras/stz1859
http://dx.doi.org/10.1111/j.1365-2966.2011.18565.x
http://dx.doi.org/10.3847/1538-4357/aa7d04
http://dx.doi.org/10.1086/170483
http://dx.doi.org/10.1093/mnras/183.3.341
http://dx.doi.org/10.1111/j.1365-2966.2008.14191.x


6058 J. Stern et al.

A P P E N D I X B: FO R M AT I O N O F C O O L I N G
FL OW S FRO M H YDROSTATIC INITIAL
C O N D I T I O N S

Fig. B1 plots the shell-averaged Mach number as a function of radius
and time in the simulation used in this work (left-hand panel) and in
the high-density 1012 M� simulation from Paper I (right-hand panel,
see also figs 5 and 9 in Paper I). Also plotted are Rcool and Rsonic(Ṁ)
predicted by the cooling flow solutions (equation 20), based on
Ṁ(t, r = 20 kpc) measured in each snapshot. In the simulation used
in this work, Rcool expands slower than the local sound speed, and
the flow converges on to the steady-state solutions with the predicted

Rsonic matching the actual Rsonic in the simulation, as discussed in
Section 2.3. In contrast, in the Paper I simulation Rcool expands faster
than the sound speed at t � 3 Gyr, and within ≈ 2 Gyr the halo gas
collapses into a purely supersonic flow with Rsonic → ∞. Fig. B1
thus suggests that dRcool/dt < cs is a necessary condition for the
convergence of initially hydrostatic gas on to the family of cooling
flow solutions discussed in this work. The same condition was
imposed by B89 in order to derive their self-similar cooling-wave
solutions. It is possible however that in realistic systems a purely
supersonic inflow will shock against outflows from the galaxy and
form a cooling flow (see Section 2.4).

Figure B1. Formation of a cooling flow versus collapse into a supersonic flow. The left-hand panel plots the simulation used in this work, while the right-hand
panel plots the high-density 1012 M� simulation from Paper I. The initial conditions are hydrostatic in both simulations, while the background colour maps
plot the shell-averaged Mach number at each radius and time. The solid black lines plot the cooling radii. The dashed lines plot the predicted sonic radii in
different snapshots, based on Ṁ in each snapshot and the relation between Ṁ and Rsonic in cooling flows (equation 20). In the left-hand panel, Rcool expands
slower than the local sound speed (indicated by the slope of the cs arrow), and a transonic flow forms with the predicted Rsonic roughly equal to the actual Rsonic

in the simulation (white contour). In the right-hand panel, Rcool expands faster than the sound speed after t = 3 Gyr, and the halo gas collapses into a purely
supersonic flow with Rsonic → ∞.
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